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Abstract

This paper proposes a novel estimation method for distribution regressions in a network setting,
considering the effects of covariates on the entire outcome distribution rather than just on the
mean. I adopt a semiparametric approach, taking into account two-way unit-specific effects
that are treated as fixed parameters to be estimated. Thus, I extend the standard distribution
regression approach to a network setting by estimating multiple binary choice models with two-
way fixed effects for different thresholds of the distribution. Instead of using bias-correction
methods to address the incidental parameter problem, as previously proposed in the literature, I
propose to employ a conditional maximum-likelihood approach (Charbonneau (2017), Jochmans
(2018)) that differentiates out the unit-specific effects. This method yields consistent point
estimates that converge at a parametric rate and remain asymptotically unbiased in the tails
of the outcome distribution, where the underlying network can be seen as sparse. Monte Carlo
simulations validate these findings for both single cut-offs and the overall outcome distribution.
The empirical application focuses on gravity equations for bilateral trade, demonstrating the
effectiveness of the proposed approach in cases where the outcome variable is bounded below at
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1. Introduction

The vast majority of studies, especially for network models, propose estimates for the effects
of covariates on the mean of an outcome variable. However, in many cases, the effects on the
entire distribution of the outcomes are also an object of interest. For instance, in international
trade applications, one might be interested not only in the mean effects of tariffs on the level of
exports from one country to another but also in how this effect may vary for different quantiles of
the distribution of trade flows. In a more straightforward cross-sectional case, the estimation of
such varying effects can be obtained via the distribution regression approach as initially proposed
by Foresi and Peracchi (1995).

Motivated by the current abundance of network datasets and the estimation of international
trade flows (which naturally constitutes a network setting), this paper provides an estimation
method with valid uniform confidence bands for the distributional effects in a network setting.
The contributions of this paper are threfold: (i) I propose an estimation method that is free
of the incidental parameter problem, being more robust in the tails of the distribution of the
outcomes; (ii) I show that uniform confidence bands can be obtained through a valid bootstrap
procedure (more details in next versions of this paper); and (iii) I illustrate the method with an
application to the estimation of gravity models for international trade flows.

A broad range of economic relationships can be modeled through a network perspective, in
particular through bilateral ties of agents (for instance, in a model of risk sharing in Fafchamps
and Gubert (2007), and in a model of the diffusion of microfinance in Banerjee et al. (2013)). As
defined by Graham (2020), in dyadic models, the outcomes reflect pairwise interactions among
sampled units. Therefore, I follow the current prominent literature on the econometrics of
networks which naturally gravitated towards such models. A key aspect of dyadic regressions is
the inclusion of observed dyad-level characteristics and unobserved unit-specific effects for each
unit in the dyad (both senders and receivers in a directed framework). Throughout this paper,
I treat the unit-specific effects as fixed parameters to be estimated, such that their distribution,

conditional on the covariates, is left unrestricted. For this reason, and because the estimated



effects can vary with the level of the outcome, the considered model is semiparametric.

The distribution regression (DR) approach of Foresi and Peracchi (1995) boils down to esti-
mating the conditional distribution of the outcome of interest with a sequence of binary response
estimators. The binary response is an indicator function of the outcome passing some threshold
(for instance, the corresponding quantiles). Due to the non-linearity of the model, the inclu-
sion of the two-way fixed effects to accommodate the dyadic structure leads to the incidental
parameter problem (Neyman and Scott (1948)) when jointly estimating all the parameters.

To deal with the incidental parameter problem, I propose to extend the conditional maximum-
likelihood approach of Charbonneau (2017) to estimate single binary choice models to multiple
(possibly a continuum of) binary choice models for the thresholds. Note that the estimator of
Charbonneau (2017) was initially proposed for a directed network formation model; however,
since the structure of those is that of a dyadic discrete choice model, it is also suitable for the
DR framework considered in this paper. The approach mentioned above relies on conditioning on
sufficient statistics that, when the underlying distribution of the outcomes is logistic, differences
out the fixed effects from the likelihood (a generalization of the conditional likelihood approach
of Rasch (1960) for panel data binary choice models with fixed effects). As shown by Jochmans
(2018), the proposed estimator for each threshold is consistent and converges asymptotically to
a normal distribution centered around the true parameter value at a parametric rate.

To my knowledge, the only paper that proposes an estimator for DR in a network setting is
Chernozhukov et al. (2020). Even though the model I propose and the approach of estimating the
DR coefficients through a sequence of binary choice models are similar to theirs, the key difference
relies on the estimation method employed for each threshold. They propose to deal with the
incidental parameter problem by analytically bias-correcting the estimates, as initially shown in
Fernandez-Val and Weidner (2016) for a standard panel data model with two-way fixed effects
and large N and T, and later formalized in Dzemski (2019) for the network’s case. As pointed
out by Dzemski (2019), in the context of a network formation model, an essential assumption

for consistency of the bias-corrected estimator is that the underlying network is dense. In the



DR setting, this translates to the conditional probability of the outcomes being smaller than
a given threshold to be bounded away from zero or one (Chernozhukov et al. (2020)). That
is, the estimates are not guaranteed to be consistent and have valid inference in the extremum
quantiles of the conditional distribution of the outcomes. On the other hand, as shown in
Jochmans (2018), the conditional maximum likelihood approach proposed in this paper allows
for a higher degree of sparsity in the underlying network, being more robust in the extremum
quantiles of the conditional distribution. These results are confirmed in Monte Carlo exercises
for both the estimates of a given threshold of the distribution (which is essentially a network
formation model, as seen in the next Sections), and for the estimates of the entire distribution.
I consider an empirical application to gravity equations for bilateral trade between countries.
As mentioned in Chernozhukov et al. (2020), the DR approach is well-suited for this application,
among others, where the outcome variable is bounded below at zero, indicating the presence
of a heavy upper tail in the distribution. I show that the estimated coefficients of the distri-
bution regression have a clear relation to marginal effects of the quantile function, providing a
further interpretation of the estimates. Moreover, in this particular application, joint confidence
bands on the estimates allow for testing whether the elasticities of gravity models of trade are
heterogeneous, which has been extensively discussed in the international trade literature.
Despite the abundance of network datasets, there is still a substantial lack of understanding
of features of the estimation of models reflecting this structure where outputs contain many zeros
(not only for the gravity equations application specifically). To illustrate the problem, consider

the following two-way fixed effects model with a possible selection bias:

Y15 = Y2.i5 (21 81,0 + o + 75 + uig)

yaij = 1 (45,5 > 0)

Y3.ij = ThiiB50 + & + ¢ + 0,
(i=1,...N;j=1,...N,i#j)

where pairs 4j first decide whether to form a link, in which occasion 2 ;; = 1 and then a non-zero



outcome y1,;; is observed, generating outcomes y; ;; with potentially many zeros. a;,7;, &/ and (7
are individual fixed effects. In both equations, the unobservable individual-specific effects might
arbitrarily depend on the observable explanatory variables. Therefore, they considered nuisance
parameters to be estimated in a semi-parametric model. The errors in the equations (u;; and
ni;) might be correlated, in which case sample selectivity should be addressed. In the gravity
models case, the equations above are obtained after a log-linearization of the original model,
which has a multiplicative form.

Currently, there are two strands in the literature of gravity equations on how to take into
account the zeros: (i) modeling through a sample selection model (Helpman et al. (2008)); or
(ii) consider the model in its multiplicative form through a Poisson pseudo maximum likelihood
(PPML) estimator (Silva and Tenreyro (2006)). However, due to the introduction of the two-way
fixed effects and the non-linearities in both models, both estimations suffer from the incidental
parameter problem. While bias-correction methods have been proposed for both the PPML
(Fernandez-Val and Weidner (2016)) and the first stage of the sample selection model (Dzemski
(2019) and Yan et al. (2019)), the estimates are consistent and valid inference is available only
under dense networks, as mentioned before. It is noteworthy that the method of Charbonneau
(2017) can be employed for the first stage of the sample selection, providing asymptotically
unbiased estimates even when the network is sparse. However, this method does not provide
estimates of the fixed effects, hence, the estimation of the second stage is infeasible.

Therefore, the DR approach proposed in this paper fills this gap in the literature, displaying
advantages compared to the previously available methods. Namely, (i) it allows for zero outcomes
by relying on modeling the conditional distribution of the outcomes directly and avoiding strong
assumptions on how the zeros are generated, and (ii) it allows for the presence of many zeros

being suitable for sparse networks.

Plan of the paper. Section 2 outlines the main model to be estimated; Section 3 provides the
estimation method; Section 4 shows the asymptotic properties of the proposed estimator; Section

5 provides the Monte Carlo simulation results for both a single threshold of the distribution and



for the entire distribution; Section 6 outlines the application for gravity models of international

trade; and Section 7 concludes.

2. A Distribution Regression Model for Networks

This section introduces a model for the DR approach that considers a network structure. Fol-
lowing the literature and as initially proposed by Foresi and Peracchi (1995), I propose a model
directly for the conditional distribution of the outcomes. A general dyadic setting is considered
to accommodate the network structure, which is assumed to take place mainly bilaterally. There-
fore, the conditional distribution is a function of dyad-specific characteristics and fixed effects
for each unit in the observed pair of nodes.

Let {(yi;, xij) : (4,7) € D} be the observed data set, where y;; is a scalar outcome variable that
can be discrete, continuous or mixed for a dyad ¢j, and x;; is a vector of covariates. Iset that there
is a specific region of interest ) for the outcome of interest and that the vector of covariates has
support X C R% . The set D contains the indices of the pairs (i, j) that are observed in a directed
network without self-links, i.e., D = {(¢,7) :i=1,...,N,j=1,...,N}\{(4,9) :i=1,...,N}.
n = |D|= N(N — 1) gives the total number of observed units. Moreover, the set of nodes in the
network is given by N = {1,2,..., N}.1

The individual fixed effects for units ¢ and j are taken into account through vectors of
unspecified dimensions v; and w; that contain unobserved random variables or effects that might
be arbitrarily related to the covariates x;;. Therefore, they can be seen as nuisance parameters.

The conditional distribution of y;; given (x;j, v;,w;) is given by:

Fy, (y | wij, v, ws) = A (x;8) + o« (vi,y) + v (wj,y), yed, (i,j) €D, (1)

where A(-) is a known link function that we assume to be the logistic distribution throughout this

paper. As shown in the Appendix A, modeling the conditional distribution by this link function

"We consider that all the nodes are senders and receivers, but the method in this paper also allows for cases
where the nodes that are senders differs from the nodes that are receivers, i.e., i =1,..., 1 and j =1,...J, with
I+#J.



is equivalent to reparametrize the problem in terms of log-odds ratios as initially proposed by
Foresi and Peracchi (1995). Moreover, B(y)o is an unknown parameter vector of interest that
varies with the levels of y; and « (v4,y) and 7 (wj, y) are unspecified measurable functions that
can be seen as the unobserved individual effects at a given level of y. This model is naturally
semiparametric, not only because the parameters are allowed to vary with the output levels
but also because it does not restrict how the individual unobserved effects correlate with the
covariates.

A key feature of models of dyadic interaction is the introduction of the two-way fixed effects.
Given the double indices nature of the model, it is reasonable to assume that it exhibits a two-
way error component structure captured by both individuals’ nuisance terms. This structure
incorporates essential aspects of networks since it allows for dependence across dyads. For
instance, the outcome determined from the pairwise interaction between units ¢ and j can be
correlated with the outcome resulting from the interaction between i and k due to the fixed effect
for unit 7. Note that one drawback of dyadic models is that, in general, the strategic dimension of
how outcomes are determined is ignored. However, they can replicate important stylized features
of network models (Dzemski (2019)), thus, having become widely used when modeling networks.
Finally, by allowing the fixed effects for senders and receivers to be different, together with the
fact that y;; need not be equal to y;;, this model allows for directed networks.

Finally, the conditional distribution Fy,.(y | &;j, i, w;) can be written as:

Fy (y | i, vi,w;s) = E[H{yi; <y} |z, vi, wy)
= Pr[gi; = 1| @45, vi, wj]

= A (2B + o (Vi) +7 (w5, 9)) - 2)

Therefore, by constructing a collection of binary variables 7;; = 1{y;; < y}, for all pairs
(i,7) € D and all points in the region of interest ), y € ), we see that the parameters of the
DR model can be estimated by a continuum of binary (logistic) regressions with two-way fixed

effects.



As highlighted by Arellano and Hahn (2007) in a standard non-linear panel data regression
with one-way fixed effects and dimensions ¢ =1,... N and ¢t =1,...7, if T is fixed and N — o0,
there will be an estimation error in the estimates of the fixed effects. This follows from the fact
that only a finite number T of observations is available to estimate each fixed effect. Since, in
general, the fixed effects can be correlated with the exogenous regressors in an arbitrary way
(and its distribution is left unspecified), the estimation error contaminates the estimates of the
other parameters as well, as they are not informationally orthogonal. For large enough 7', this
bias should be small. However, even under 7' — oo and N — oo, the fixed effects estimator
will be asymptotically biased, leading to incorrect inference over the parameters and the average
partial effects.

Despite the use of cross-sectional data in this paper, the dyadic structure of the model pro-
posed in this paper provides a square pseudo-panel data setting. Therefore, the conclusions above
for non-linear standard panel data setting carry over for estimating each binary logistic regression
for each level of y as described in Equation 2. Hence, even when considering asymptotics under
sequences of both dimensions i = 1,...N,j = 1,... N going to infinity, the estimates obtained via
maximume-likelihood are asymptotically biased. In fact, the introduction of a second fixed effect
aggravates the resulting bias.

Following the results shown by Ferndndez-Val and Weidner (2016), I demonstrate how the
asymptotic biases arise in this framework. For the sake of simplicity, I denote by 3, the slope
parameter (3(y) which explicitly depends on the level of the outcome y. After concentrating
out the nuisance parameters in the maximization of the likelihood for the slope parameter f3,
in Equation 2, and using an asymptotic expansion for smooth likelihoods under appropriate

regularity conditions?:

- B D _
By=Fuo+ o7t wog tor((W =171, (3)

2For more details, see Appendix B, and for the complete derivation see Fernandez-Val and Weidner (2016)



for some constants B, and D, and where By,0 is the true value of the parameter. By the

properties of the maximum likelihood estimator, under regularity conditions:
A~ — d —
N(N - 1) (By - By) - N(O, Voo)v (4)

for some variance V.. From Equation 3, as N — oo, By LN By,0. Hence, the estimate of 3, ¢ is
consistent. However, from the equation above, the estimate converges to a distribution that is
not centered at zero, which leads to incorrect asymptotic confidence intervals. This demonstrates
the incidental parameters problem. In this context, this asymptotic bias arises as the order of
the bias is higher than the inverse of the sample size due to the smaller rate of convergence of

the fixed effects.

3. Estimation method

As outlined in the previous Section, the main challenge in the estimation of the continuum
of binary regressions given by Equation 2 is that, even for a single binary regression, the inci-
dental parameter problem (Neyman and Scott (1948)) stems from the presence of the two-way
fixed effects. To circumvent this problem, I propose to estimate the parameters of the model
0(y) = (B(y),a1(y),...ar(y),v1(y),...7vs(y)) for each threshold point (for a given level y), inde-
pendently, with the conditional maximum-likelihood method suggested by Charbonneau (2017)
(for directed networks) and concurrently by Graham (2017) (for undirected networks). The core
of this approach is to extend the conditional maximum likelihood method for standard panel
data models with one fixed effect in Rasch (1960) and Arellano and Honoré (2001) to models
with two-way fixed effects, relying on the existence of a sufficient statistics for the fixed effects
when the link function follows a logistic distribution.

Even though this approach was initially proposed for network formation models, the model
I consider for a single cutoff point resembles that of a network formation model. This follows
because it is a discrete choice model that considers fixed effects for each node and dyad charac-

teristics. For the sake of simplicity, and without loss of generality, I denote a;, = a(v;,y) and



Yy = V(wj, ).

From the conditional distribution F},; and the constructed binary variables g;;:
gjij = 1{w§j,8y7o+ai7y+'yj7y+5ij > 0} t=1,....1,5=1,...,J

where «;, and v, , are fixed effects and we assume that ¢;; follows a logistic distribution. There-

fore:

E[{yi; <y} | Tij, iy, Vil = Prlfi; = 1| 45, iy, 759 (5)

(6)

~exp(®Byo + iy +7y)
1+ exp(a;;By,0 + iy + Vjy)

Under this model, it is possible to show that the sums across each dimension of the pseudo
panel, Zjvzl ¥;j and vaz 1 Uij, are sufficient statistics for «;, and «;,. While this statement is
previously proved for the standard panel case with one fixed effect, Charbonneau (2017) only
implicitly provides this result. I provide a proof for this statement in Appendix C.

Even though one could propose a conditional maximum likelihood estimator based on the
sufficient statistics, the maximization might be intractable. Fortunately, Charbonneau (2017)
shows that it is possible to difference out the two-way fixed effects by further conditioning the
above probability on the set of events {¥;; + Jir = 1,%1; + G = 1,95 + i, = 1} for different

indices of senders and receivers {i,[; j, k}, such that:

Pr(gi; = 1| ®ij, iy, Vi, Uij + Uik = L, 915 + G = 1, G5 + G = 1]
__exp(((®ij — ®ik) = (z1; — 21k))' By 0)
1+ exp(((xij — zir) — (z15 — T1x)) Byo)’

(7)

which also no longer depends on the fixed effects. This result is obtained by applying the same
trick for the logit estimation in a static standard panel model with a single fixed effect.

The last expression is then applied to all quadruples of observations that satisfy the conditions

10



(a) Subgraph 1 (b) Subgraph 2

Figure 1: Two informative tetrads

{%ij + Gi = 1,915 + e = 1, i + e = 1}. Hence, the function to maximize is given by:

I I e ] o
i1 j=1 i Lke Zs; p(((wi; — i) — (T — @)’ By)
where Z;; is the set of all potential nodes k and [ that satistifies the conditions {g;; + 9ir =
Lgij + G = 1,95 + i = 1} for the pair ij. In the next Section, I show a simple pairwise
differences transformation of the outcomes y;; and the covariates x;; followed by a logit estimation
leads to the implementation of this estimator.

A loose intuition for the identification of the common parameters is analogous to that of
Graham (2017) for the undirected case. The heterogeneity parameters (fixed effects) account
for the in-degree and out-degree distributions of the network (the quantity of one’s for a given
node when the node is a sender or a receiver). Therefore, the precise location of the ones

(or links) is driven by the variation provided by the covariates and the common parameters

’
]

(x;8). Thus, conditioning on the set {7 + i = 1,95 + G = 1,7%i; + Jix = 1} provides the
ground for an estimator that is based on the relative probability of different types of subgraphs
configurations with identical degree sequences, giving the necessary variation to identify the
common parameters.

For instance, the above Subgraphs 1 and 2 in Figure 1 provide the same contribution of
the unobserved heterogeneity to the likelihood, such that the conditional frequency to which

each is observed depends only on the variation given by the covariates associated with each. In

other words, in conditioning on the degree sequences of tetrads (since they are the same in both
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(a) Subgraph 3 (b) Subgraph 4

Figure 2: Two non-informative tetrads

subgraphs), the only variation is the location of the links. This intuition aligns with the fact
that the sums across each dimension are sufficient statistics for the fixed effects. At the same
time, the conditioning events guarantee that for a node there is variation in the outcomes such
that the common parameters can be identified. This feature cannot be seen in Figure 2, where
the Subgraphs are informative to the likelihood, and the outcomes for all nodes do not present
variation in a given Subgraph (i.e., a node is always sending a link or never sending a link in

each Subgraph).

4. Asymptotic properties

4.1. Asymptotic properties for the regression at a single cutoff point

Throughout this section I treat the sequence of individual effects {a;,v;}n as fixed, since
we always condition on them. Moreover, I consider asymptotic approximations where both
dimensions of the pseudo-panel tends to infinity at the same rate.

Following Jochmans (2018), to derive the asymptotic properties of the proposed estimator,

we define the following random variables, by fixing a quadruple of distinct nodes {i,[; j, k} from

N
(Wi — Tix) — (5 — ire)
2

2(o{i,l;7,k}) =
r(o{i,l; 4, k}) = (Tij — Tin) — (21 — Tik),

where we introduced a function o(-) that maps a quadruple to the index set M = {1,2,..., M},

12



M denoting the number of distinct quadruples from N, i.e, M = (];[) (NQ_Q) = N(N_l)(]i_Q)(N_?’) 3

Each distinct quadruple of nodes {i,[;j,k} corresponds then to a unique o{i,l;75,k} € M. In
the remainder of this section I will use the shortcut notation r, and z,.

We further note that the transformed dependent variable can take values from the set
{-1,-1/2,0,1/2,1}, and that the event that z € {—1, 1} corresponds to the condition {g;;j+7ir =
L g + 9k = 1,9ij + Ju. = 1}. Therefore, by collecting © = (x4, ik, T15, 1), the results in the

previous section leads to the following lemma:

Lemma 1 (Sufficiency).

exp(r;,@yp)
1+ exp(r{,,@y@)

Prizo =1 | x, 2z, € {-1,1}] =

As before, conditional on  and on z, € {—1, 1}, the distribution is logistic and does not depend

on fixed effects. The conditional log-likelihood of the quadruple is:

Hze = 1}10gA(r:7ﬁy,0) + 1{zs = —1}log(1 - A(rérﬁyﬁ))?

which form the basis of the construction of the quasi conditional maximum likelihood estimator
for 3. Hence, we estimate the model by maximizing the empirical counterpart of this conditional

log-likelihood for all distinct quadruples in M. The estimator can be written as:

By = argmax Ly (8y)
ByeB

3Note that the number of quadruples reflect the fact that the senders are permutation invariant, and the
receivers as well.
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where B is the parameter space searched over, and

Ln(By) = Y 1{ze = 1}ogA(r},8,) + 1{z, = —1}og(1 — A(r}8,))

ceM

It is clear at this point that the objective function is the same as the standard logit log-likelihood
function applied to all quadruples that satisfy z, € {—1,1}. We denote the number of quadruples
satisfying it by M* = 3"\ 1{z € {-1,1}}.

The following set of (weak) assumptions are needed to establish consistency of the estimator:

Assumption 1 (Sampling). The N nodes in N are sampled independently.
Assumption 2 (Parameter Space). 3, is interior to B, a compact subset of RAmBy

Assumption 3 (Moments). For all (i,5) € D, E(||zi;]|*) < C, where C is a finite constant.

Define the expected fraction of quadruples in the data that contribute to the log-likelihood

as:

oy = B 2gen Hzo € {1, 11}

Assumption 4 (Identification). Np, — co as N — oo and the matrix

Jim (Mpa)™t ST Blrgrt £ 8,001z € {-1,1})

ceM

has maximal rank.

Assumption 1 allows for dependence of the covariates across dyads that have nodes in com-
mon, a key feature in network models. That is, the network dependence of the data arises from
the fact that not only the same fixed effects appear across different pairs, but also, the covariates
of a dyad might be correlated with those of a different dyad with one node in common. Assump-
tion 2 is standard for establishing consistency in non-linear models. Assumption 4 allows for the
expected fraction of informative quadruples to shrink as N grows, allowing for sparse networks.

However, p,, should not shrink faster than N~!, implying that the accumulation of informative

14



quadruples should not cease as the sample grows. These assumptions are the equivalent of gen-

eral regularity conditions for non-linear models.

Theorem 1 (Consistency). Let Assumptions 1-4 hold. Then By 2 Byo as N — oo.

Proof. Follows from Jochmans (2018), a more detailed proof is available in Appendix D.

Despite the fact that the empirical counterpart of the conditional log-likelihood has the form
of a standard logit model, the conventional standard errors are not valid for ,é'y. The reasons
are that: (i) the estimator is based on a quasi-likelihood, hence, the information equality does
not hold; and (ii) the score vector involves sums over quadruples of nodes, such that each node
appears in different summands, leading to dependences over such summands that need to be
taken into account. To derive the asymptotic distribution of the estimator, we first need to

streghten the moment requirements:

Assumption 5 (Moments). For all (4,5) € D, E(||z;;]|%) < C, where C is a finite constant.

Then, we introduce each summand of the score as:

s(0,8y) = ro{l{ze = 1}(1 = A(r;By)) + 1{zo = —1}A(r,By)}.

Hence, the score vector is:

Sn(ﬁy) :ZZZ Z S(U{ivl;jvk}vﬁy)

i a<l il i<k kil

The main result to characterize the distribution of the estimator is that Y,,(8,.0)/2Sn(8y.0) 4

N(0,I), where:
N

T.(8y) = Z Z vij (By)vij (By)'

i=1 j#i

15



vij(By) = Y Y slo{i 4.k}, By)-

This result, combined with the Hessian that is given by:

Ho(By) == > rorl f(rlBy1{zs € {~1,1}}),

ceM

where f is defined as the logistic density function. And, finally, defining:

~

Q= Hu(By) ' C0(By) Ha(By) ™!

‘We have:

Theorem 2 (Asymptotic distribution). Let Assumptions 1-5 hold. Then [|3, — By.0|=

Op(1/y/N(N — 1)p,) and

9_1/2(By - By,O) i) N(O,I)

as N — oo.
Proof. Follows from Jochmans (2018), a more detailed proof is available in Appendix D.

The proof for this theorems follows from the fact that we can write the score vector in the form
of a U-statistics. Then, it is possible to define a Hajek projection for such statistics, such that
the score evaluated at the true parameter value is asymptotically equivalent to it (conditional on
covariates). Finally, by using Hoeffding decomposition one can define its asymptotic variance,
and by arguments of conditional independence, it is possible to derive its limiting distribution.
The main argument is that, following traditional dyadic models, the probability of y;; = 1
for a given dyad 4,j is conditionally independent of the probability for the remaining dyads,
conditioning on the node (fixed effects) and dyad (covariates) characteristics. One drawback is
that transitivity across the probabilities is not taken into account by this model. It rules out
interdependent link preferences, where individuals’ preferences over a link may vary with the

presence or absence of links elsewhere in the network. However, it is shown by Dzemski (2019)
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that such a dyadic structure can recover the transitivity observed in some datasets.

Imporantly, Theorem 2 shows that, pointwise, the estimator converges at a parametric rate.
A natural next step is to demonstrate the uniform covergence across all thresholds of the distri-
bution, since up to now it was shown the asymptotic properties for a single cutoff point; and to
provide simultaneous confidence bands as in Chernozhukov et al. (2020), which can be estimated
with a valid bootstrap procedure. However, these two steps will be provided in the next versions
of this paper.

This paper is not the first in the literature to propose an estimation method for distribu-
tion regression in a network framework. Chernozhukov et al. (2020) proposes to estimate the
parameters of the model 8(y) := (8(y),a1(y), ... ar(y),11(y),...vs(y)) also separately for each
threshold. The key difference to my approach is that they employ a conditional maximum likeli-
hood method with analytical bias corrections initially proposed by Fernandez-Val and Weidner
(2016) and later applied to the context of a network by Yan et al. (2019) and Dzemski (2019).
However, as mentioned before, in the context of a network formation model, such a method
requires that the underlying network is dense, meaning that, in the DR context, the conditional
probabilities of the events {y;; < y} are bounded away from zero and one. Therefore, in the
extreme quantiles of the distribution, such an approach might be susceptible to the incidental
parameter problem. As Assumption 4 indicates, the method proposed in this paper allows for
the expected fraction of quadruples (and therefore, the probability of forming a link in a network
formation model) to shrink to zero as N grows.*

Furthermore, while analytical bias corrections allow to cover a broader class of models, it does
not completely eliminate the asymptotic bias. In comparison, the pairwise difference eliminates
it entirely by differencing out the nuisance parameters; and allows for the presence of many zeros
or ones, which are observed in the constructed binary variable g for extreme quantiles of the

conditional distribution.

4Note that in the usual definition of a sparse network, the probability of forming links should also not converge
to one. By conjecture, Assumption 4 also allows for this notion of sparsity.
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4.2. Uniform convergence over the continuum of thresholds

To be provided in next versions of this paper.

4.3. Simultaneous confidence bands

To be provided in next versions of this paper.

5. Monte Carlo simulations

5.1. Monte Carlo simulations for a single threshold

In this section, I propose a Monte Carlo simulation exercise for a single threshold y, which
boils down to a network formation model. The aim is to compare the performance of the
bias correction methods ® to that of the Charbonneau (2017) approach under different levels of
sparsity of the network.

I follow a standard data generating process for directed networks (and dyad settings), similar
to those in Jochmans (2018), Dzemski (2019) and Yan et al. (2019). I generate the single regressor
as:

zij = — [ ui —uy |,

where u; = v; — % for v; ~ Beta(2,2), and the true parameter value fy is set to one. The fixed

effects are a deterministic function of the sample size:

where N is the number of nodes in the network and the constant C), usually depends on it,
specifically, the larger the value of C,,, the sparser the generated network. In the above mentioned
papers, Cy, € {0,log(log(N)),log(N)}. Moreover, note that the source of the dependence across

dyads comes from both the covariates structure and the inclusion of the fixed effects.

5As initially proposed by Fernéndez-Val and Weidner (2016) for standard panel models with large N and T,
and latter adapted to the networks framework by Yan et al. (2019) and Dzemski (2019)
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I deviate from the standard specifications for C, such that it is possible to have a better
comparison between the two methods. Namely, I vary the constant C,, for different sample sizes
indicated by the number of nodes N such that the number of informative quadruples for the

Charbonneau (2017) estimator remains constant. The results for 1000 simulations can be seen

in Table 1.

C, =175 C, =109 C,=14.1

N =50 N =170 N =90
Mean bias (PD) -0.0434 -0.0304 -0.0645
Mean bias (BC) -0.0922 -0.1085 -0.1148
Median bias (PD) 0.0486 0.0227 0.0021
Median bias (BC) -0.0364 -0.0403 -0.0575
RMSE (PD) 2.1177 2.0462 2.0953
RMSE (BC) 1.7963 1.8264 1.8040
Mean bias (PD winsorized) -0.0135 -0.0013 -0.0355
Mean bias (BC winsorized) -0.0742 -0.0816 -0.0973
Median bias (PD winsorized) 0.0486 0.0227 0.0021
Median bias (BC winsorized) -0.0364 -0.0403 -0.0575
RMSE (PD winsorized) 1.6743 1.6691 1.6660
RMSE (BC winsorized) 1.5083 1.5074 1.5165
Size t-test (PD) 0.0232 0.0228 0.0207
Avr. perc. quadruples 0.000162 4.1e-5 1.5e-5
Avr. perc. links 0.011558 0.005906 0.003547
Avr. quadruples contributing 223.5959 227.1113 224.7812

Table 1: Based on DGP by Jochmans (2018). Symmetric case with 10000 simulations.

The simulation exercise shows that when increasing both N and C),, while the number of
quadruples contributing to the likelihood function of the Pairwise Differencing (PD) estimator
remains reasonably constant, the sparsity in the network increases (as it is reflected by the average
percentage links). Note that, as expected from before, the mean bias of the PD estimates are
generally smaller in magnitude than that of the Bias Corrected (BC) estimator. Moreover, the
Median Bias displays a curious behavior: for the PD estimator, it shrinks as the sparsity grows,
while for the BC increases - the latter shows that the worsening of the performance of the BC
estimates are not only due to outliers. However, in the setting for N = 50 the median biases

of both estimators are similar in magnitude, but as the network becomes sparser, the median
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biases for the BC estimator worsen while for the PD estimator improves considerably.

To further reduce the effect of outliers, I winsorize the top and bottom 5% of the estimates.
Analyzing the winsorized result, it is even clearer that the PD estimates reduces the bias by
a larger magnitude than the BC estimates throughout all the settings for the simulations. Fi-
nally, the RMSE of the PD estimator is generally bigger in magnitude, as expected, since the
PD estimator is not efficient. All in all, this simulation exercise shows that the PD estimator
performs better compared to the BC as the network becomes sparser, as long as the number of
informative quadruples remains reasonable. Thus, the same conclusion should carry over to the

DR estimators based on both methods, especially in the extreme quantiles of the distribution.

5.2. Monte Carlo simulations for the entire distribution

To analyze the finite sample properties of both DR estimators, I follow the same Monte
Carlo simulations setting as Chernozhukov et al. (2020), which is calibrated to the empirical
application in the following Section for gravity models of international trade. More specifically,

I set the outcome to be generated by a censored logistic process
yyy = max {a;B + @ +7; + A7 (u) for,0}, (i) €D

where D = {(4,7) : 1 <, < 157,49 # j},x;; is the value of the covariates for the observational
unit (i,7) in the trade data set, y;; is the level of exports from country i to j, op = 7/V/3,
the standard deviation of the logistic distribution, and (3, Q1yeeey QL Y1y - ,ﬁ;,&) are Tobit
fixed effect estimates of the parameters in the trade data set with lower censoring point at
zero. Moreover, I set the errors to be independently drawn from a uniform distribution ¢(0,1).
For simplicity, in this simulation exercise, I consider only one covariate, the log of the distance
between countries.

Importantly, it can be shown that the conditional distribution of the dependent variable yfj

is equivalent to a DR model as defined before, where:

A~

B(y) =or (ely - 5) /G, «ai(y) = —opa;/o, and v;(y) = —oL7;/0
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with e; the unit vector of dimension d, with a one in the first component. The results are based
on 250 simulations for now due to computational limitations (it is to be expanded in next versions
of this paper).

Figure 3 shows the absolute bias, absolute median bias, and the RMSE obtained with a
naive fixed effects logit estimation (Uncorrected Logit UL), the Bias Correction (BC) method of
Chernozhukov et al. (2020) and with the proposed Pairwise Differences (PD) estimator in this
paper. Both BC and PD reduce the bias significantly in finite samples compared to the UL
estimates. However, as expected, in the extreme quantiles, the BC method does not seem to
fully correct for the bias (both mean and median), while the PD biases do not increase relative
to the other quantiles. Moreover, as expected, the RMSE for the UL is the biggest due to the
high magnitude of the biases. Also, since the PD estimator is not efficient, its RMSE is larger
than that of the BC.

Figure 4 displays the percentage of informative quadruples to the likelihood of the PD estima-
tor, the number of informative quadruples, and the zoomed-in number of informative quadruples
(for scaling reasons). Naturally, as the quantiles increase, the percentage and number of quadru-
ples decrease significantly. However, at the 99% quantile, there are still about 10000 informative

quadruples, which renders the PD estimation robust at the tail of the outcome distribution.

6. Application to gravity models of international trade

I consider the estimation of gravity equations for bilateral trade between countries, using the
same data as Helpman et al. (2008) and Chernozhukov et al. (2020). It contains information
on bilateral trase flows and covariates for 157 countries in 1986 (Congo is excluded due to the
perfect prediction problem, i.e., lack of variation in the dependent variable). Both i and j index
countries as exporters and importers.

The outcome y;; is the volume of trade in thousands of constant 2000 US dollars from country
i to country j, and the covariates P (z;;) = x;; include determinants of bilateral trade flows such

as the logarithm of the distance in kilometers between country 7 ’s capital and country j ’s capital
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Figure 3: Simulation results for the DR coefficients of log distance.
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Figure 5: Estimates and 95% pointwise confidence intervals for the DR-coefficients of log distance.

and indicators for common colonial ties, currency union, regional free trade area (FTA), border,
legal system, language, and religion.

There are no trade flows for 55% of the country pairs in the dataset. The volume of trade vari-
able exhibits much larger standard deviation than the mean. Since this variable is bounded below
at zero, this indicates the presence of a very heavy upper tail in the distribution. This feature
also makes quantile methods specially well-suited for this application on robustness grounds.

Figure 5 shows estimates and 95% pointwise confidence intervals for the DR coefficients of log
distance plotted against the quantile indexes of the volume of trade, obtained by Chernozhukov
et al. (2020) using bias corrected (BC) fixed effects estimates, the method proposed in this paper;
obtained when using the pairwise differencing of outcomes (PD), and the uncorrected FE logit
estimation. The z-axis starts at .54, the maximum quantile index corresponding to zero volume
of trade. The region of interest ) corresponds to the interval between zero and the 0.95-quantile
of the volume of trade. Note that the sign of the effect in terms of volume of trade, y;; , is the
opposite to the sign of the DR coefficient. Figure 6 shows the analogous estimates for the DR
coefficients of legal.

As in Chernozhukov et al. (2020), note that the difference between the uncorrected and the

bias corrected estimates is of the same order as the magnitude of the width of the confidence
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Figure 6: Estimates and 95% pointwise confidence intervals for the DR-coefficients of legal.

intervals® for the log distance. Moreover, the largest estimated bias when comparing the two and
also when comparing with the pairwaise difference estimator lies on the upper quantiles of trade,
where the constructed binary variables have less variation. However, our estimates suggest an
even higher bias in magnitude across the entire distribution. Interestingly, when compared to the
BC estimates, the difference between the two estimates (PD and BC) seems to be constant across
the distribution. Importantly, the PD estimates suggests that the effect of distance across the
distribution is significant, but of smaller magnitude. A similar conclusion is drawn in general for
the coefficients for legal. An exception is at the upper quantiles, where the PD estimates suggest
a smalled bias relative to the BC estimates. Finally, as expected the confidence intervals around
the proposed estimator are wider compared to that of the BC estimator, since this estimator is
not as efficient as standard MLE.

Even though it would be desirable to compute counterfactual effects for the estimated distri-
bution function (or, quantile functions), a drawback of this approach is that such an estimation
is infeasible. This occurs since there are no available estimates for the fixed effects, or average

marginal effects in general, as opposed to the bias correction method of Chernozhukov et al.

5For now, the confidence intervals for the PD estimator are obtained with the pointwise estimates of the
standard errors.
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(2020). However, there is a further interpretation to the estimated coefficients in terms of the
derivatives of the conditional quantiles under certain conditions.

The conditional distribution of y;; given the covariates and the unobserved effects can be
represented by either the conditional distribution function or the conditional quantile function.
While these equivalent representations correspond to two alternative approaches to estimation,
there are relevant links between DR and quantile regression (QR) estimates, as shown by Koenker
et al. (2013). In particular, following results from Chernozhukov et al. (2020) for our framework,
it is possible to show that the common parameters of the model are related to the derivatives of
the conditional quantiles under certain conditions.

When y;; is continuous, the model given by Equation 1 has the representation as an implicit

nonseparable model by the probability integral transform:
A (2358 (yij) + o (Vi yij) + 7 (W5, 7)) = wij,  wij | ®i5,vi, w05 ~ U(0,1). (9)

where, as commonly seen in DR or QR approaches, u;; represents the unobserved ranking of
the observation y;; in the conditional distribution. Let @ (u|x;;,v;, w;) be the u-quantile of y;;

conditional on (#;j, v;, wj). This quantile function can be defined as:
Q (u| @iy, vy wj) =inf{y € Vi Fy, (y | zij,v1,w5) > u} Asup{y € Y}. (10)

It can be shown that if (i) Fy,; (y | i, i, w;) is strictly increasing in the support of y;;; (ii)
OA(z)/0z > 0 for all y in the support of y;;; and (iii) @ (u | ©i;, ¥4, w;) is differentiable, then the
DR coefficients are proportional to (minus) derivatives of the conditional quantile function, and

ratios of the DR coefficients correspond to ratios of derivatives:

Be(y) _ 8:1:ij (u | &5, Vi, wj)
Br(y) y=Q(ulz;j,vi,wj) 89:ij (u | Lij, Viij)

. Lk=1,....d, (11)

Therefore, based on the figures above for the estimated coefficients, it is possible to infer that

the marginal effects of distance on the quantile functions is larger in magnitude than that of the
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legal variable.

Finally, there is a consolidated debate in the international trade literature regarding the
homogeneity of trade elasticities, which ultimately affects welfare gains from trade (Arkolakis
et al. (2012), Melitz and Redding (2015), Chen and Novy (2022)). The method presented in this
paper provides a straightforward way (provided the confidence bands for the estimates) to test
the heterogeneity of trade elasticities across different quantiles of the distribution of trade, which

proves to be of importance in the literature.

7. Conclusion

This paper introduces a novel method for estimating distribution regressions in a network
setting. To accommodate the network structure, It employs a semiparametric approach, treating
two-way unit-specific effects as fixed parameters, and addresses the incidental parameter prob-
lem using a conditional maximume-likelihood approach initially proposed for network formation
models (Charbonneau (2017), Jochmans (2018)). The proposed method provides consistent es-
timates and robust inference pointwise, particularly for extremum quantiles of the distribution.
This approach fills a gap in the econometrics of network model literature by accommodating zero
outcomes and sparse networks without relying on strong assumptions regarding how the zero out-
comes are generated. Moreover, the empirical application demonstrates that this method is of
practical relevance, allowing, for instance, to test whether the elasticities of gravity models of
international trade are heterogeneous across thresholds. A current drawback of the proposed
method is that estimates of counterfactual distributions are infeasible. This is because the esti-
mates of fixed effects are unavailable, and the average (marginal) effects of network formation
models remain set-identified when the network is sparse - which is the case of the underlying
network in the extreme quantiles of the distribution of outcomes. Therefore, future research
would involve obtaining estimates for bounds on the partially identified average effects of net-

work models.
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Appendix A. An introduction to Distribution Regression (DR)

In this section I present an introduction to the DR approach, following the initial proposal by
Foresi and Peracchi (1995), and further discussed in Peracchi (2002) and Koenker et al. (2013).
Consider the problem of estimating the conditional distribution of a random variable Y given a
vector of X covariates in a standard cross-sectional case. Note that the interest is not in merely
a few quantiles but in the entire conditional distribution, F'(y|x).

It is proposed to select J distinct values —oo < y1 < -+ < yj < o0 in the range of interest
of Y (which is related to the quantiles of the distribution of Y), and estimate J functions
Fi(z),...Fj(x), with Fj(z) = F(y;|z),j =1,...J. It is argued that by suitably choosing J and
their position, one can get a reasonably accurate description of F'(y|x).

If the conditional distribution of Y is continuous with support on the entire real line, then at

any point z in the support of X, the sequence of conditional distribution functions must satisfy:

0< Fj(z) <1, j=1,...,J (A1)

0< Fi(z) <--- < Fy(z) < 1. (A.2)

To impose the condition given by Equation A.1, it is suggested to not model Fj(z) directly, but
rather to estimate the log-odds n;(x) = In[Fj(z)/(1 — Fj(z))]. Then, given this estimate of the
nj(z), one can estimate the conditional distribution at the threshold j by:
Fi(z) = _expi(@) (A.3)
I 1+ expn;(x)
Let H be the class of functions of x that are possible candidates for the log-odds ratio. Since the

random variable 1{Y < y;} has a Bernoulli distribution with parameter Fj(z), by the definition

of the cumulative conditional distribution, we can define the best Kullback-Leibler approximation
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15 (z) to nj(z) in the class of functions H as the minimizer of K(n, n;) = I(n;) — I(n), with:

l(n) =E{Y <y;n(X) — In(1 + expn(X))] (A4)

— E[F;(X)n(X) — In(1 + expn(X))].

The first expectation is taken with respect to the joint distribution of (X,Y), and the second
with respect to the marginal distribution of X. Therefore, the function 7} maximizes (1) over
the class H. If n; € H, then 77;? = n;. Importantly, if X is a scalar random variable, and H is
the class of functions linear in z, then the best Kullback-Leibler approximation to n;(x) is of a
linear form 77 (z) = ; + 2d;, where (v;, ;) are such that the approximation error

exp n;(X)

F(X)—- ——— 9~ 7
5(X) 1+ expn}(X)

has mean zero and is uncorrelated with X. Therefore, 77 can be estimated by maximizing the

sample log-likelihood:

n

L(n) =n~" Y [1{Y; < y}n(Xq) — In(1 + expr(Xq)].
i=1

over the linear functions in the class H. Clearly, this is obtained by fitting J separate logistic
regressions, one for each binary random variable 1{Y; < y;}, j =1,...J. Alternative speci-
fications for the class of functions H, for instance, non-linear specifications, entails alternative
estimation methods. One caveat of this approach is that while it satisfies the condition given by
Equation A.1, by modeling the log-odds ratio, it does not guarantee the monotonicity condition

given by Equation A.2.

Appendix B. The incidental parameter problem

As highlighted by Arellano and Hahn (2007) in a standard panel data regression with one
way fixed effects and dimensions ¢ = 1,...N and ¢t = 1,...T, if T is fixed and N — oo, there

will be an estimation error in the estimates of the fixed effects, as only a finite number T of
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observations are available to estimate each fixed effect. As we allow for the fixed effects to be
correlated with the exogenous regressors (and its distribution is left unspecified), this estimation
error contaminates the estimates of the other parameters as well, as they are not informationally
orthogonal. For large enough 7', this bias should be small. However, even under 7' — oo and
N — oo, the fixed effects estimator will be asymptotically biased, leading to incorrect inference
over the parameters and the average partial effects.

The same argument holds for the present framework of a dyadic regression with two-way fixed
effects. In our panel data model, we have two dimensions: ¢ = 1,..N,j7 = 1,...N. However,
both the dimensions grow at rate V. I will consider asymptotic results such that N — oo.

Note as well that for each new country in the dataset, the number of observations is increased
by 2(N — 1). Moreover, for each fixed effect in Equation 2 there are (N — 1) observations
available for their estimation. I will now use results shown by Fernandez-Val and Weidner
(2016) to demonstrate how the incidental parameter problem arises in this framework, delivering
consistent but asymptotic biased estimators, keeping in mind that as N — oo both dimensions
i and j go to infinity and also the number of observations N(N — 1) go to infinity.

Given the dataset of N(N — 1) observations {(g]ij,x;j)/ 1<i<N,1<j<N,i# j} with

¥ij =1 (gjz*j > O), we have that y;; is generated by the process:
g’Lj ‘ [B’L'j7ay7’yy7/8y ~ fY ( ‘ xij7 O‘yyﬁ)/yu By)

where: oy = (a1,y,...any) Yy = (Y1,ys - - - YN,y) , fy is a known probability function and a; y, vj4
are the unobserved fixed effects. Note here that this approach is semi-parametric in the sense that
is does not specify the distribution of the fixed effects or their relationship with the explanatory
variables.

We can further model the conditional distribution of 2 ;; using a single-index specification
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with fixed effects, since it is a binary response model:

Iy Wij | g, oy, vy, By) = F (258 + iy + Vi)
1-3y;
X [L=F (238 + iy +759)] 7,

where, clearly g;; € {0,1} and F' is a cumulative distribution function, defined to be a standard

logistic.

I can then collect all the fixed effects to be estimated in the vector wyny = (X1, - - - ANy, Y1,ys - -

which can be seen as a nuisance parameter vector. Then, the true values of the parameters, de-

noted by 8,0 and wyn,y0 are the solution to the population conditional maximum likelihood

maximization:
m,aX ) ]E [L (/8 ’wNN, )]
(ﬁvaNN,y)ERdlmBy+dlmwNN,y w Yy i
with
L (By, wNN,y)
Y 2
= (N(N =1))71 9> > log fy (3 | zij, vy By) = b (dywwnny)” /2
=1 j#i

where E,, denotes the expectation with respect to the distribution of the data conditional on
the unobserved effects and strictly exogenous variables, b > 0 is an arbitrary constant, :yy =
(1%, —1’y) and 1y denotes a vector of ones of dimension N.

The second term of L relates to a penalty that imposes a normalization to identify the fixed
effects in models with two-way fixed effects that enter in the log-likelihood function as oy + ;-
To be more specific, in this case, adding a constant to all «; , and subtracting the same constant
from all ~;, would not change o, + ;. Thus, without this normalization, the parameters o ,
and v;, are not identifiable.

To estimate the parameters, we solve the sample analogue of the following equation:

max L w
(By7wNN,y)€Rdim£y+dim“"NN,y (6:'!7 NN,y)
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In order to analyze the statistical properties of 3,, we first concentrate out the nuisance param-

eters wyn,y, such that for given 3y, the optimal Wy (By) is:

ONNy (By) = argmax, .y ERIMENN.y L (By, wNN,y)

Thus, the fixed effects estimator of 8, and wynNy are, by plugging in the previous expression for

WNNy (By) :

By = argmaxg cpdim sy LBy, @nny (By)) (B.1)

ONNy (By) = ONNy (By) (B.2)

The source of the problem is that the dimension of the nuisance parameters wyy,, increases
with the sample size under asymptotic approximations where N — oco. To further describe the

incidental parameter problem, denote:

By = argmaxg cpdim gy E, [£(By, NNy (By))]

Using an asymptotic expansion for smooth likelihoods under appropriate regularity conditions,

provided by Fernandez-Val and Weidner (2016), we have that:

By = Byo + (NBfl) - (NDf’l) +op ((N-1)71) (B.3)

For some constants Bs, and Do,. The derivation for this expression can be found in the Appendix
of Ferndndez-Val and Weidner (2016). As explained by the authors, the expansion is obtained
by first taking a firstorder Taylor expansion of the Equation B.1 around the true value 3y,
as it is usually done to obtain the asymptotic properties of such estimator. Then, one should

around the

additionally take a second-order Taylor expansion of the obtained term W

Y

true values of the nuisance terms. Intuitively, this second step demonstrates how the estimates of

the fixed effects affect the estimates of the structural parameter 3,. To obtain the exact form of
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the expressions By, and D a quite involved derivation is needed. However, this is not the focus
of our study, since we show later that there are other possibilities to correct for the asymptotic
bias generated by these terms other than deriving the biases themselves.

Moreover, by the properties of the maximum likelihood estimator we have that, under regu-

larity conditions:

N(N —1) (By - By> % N (0, Voo)

For some Vis. By substituting the expression for By,0 obtained in Equation B.3, we obtain that,

by Slutsky’s theorem:

R (A )
= \/N(N_l) (By_5y>

+VN(N—1) <(NBi°1) + (NDiO1) +op ((N — 1)—1)>

% N (Boo + Do, Vioo)

We can see from Equation B.3 that, as N — oo,By 2 By0 (Byo being the true value of the
parameter), thus, the estimates of 3, o are consistent. However, from the equation above we see
that the estimates converge to a distribution that is not centered at zero, which leads to incorrect
asymptotic confidence intervals. This demonstrates the incidental parameters problem, that boils
down to an asymptotic bias in the estimates of 3, . This asymptotic bias arises as the order of
the bias is higher than the inverse of the sample size because of the small rate of convergence of

the fixed effects.

Appendix C. Sufficient statistics

In this section, I provide a proof that Zjvzl i and Z@]\L 1 Ui are indeed the sufficient statistics
for a; , and ;. In the following, for the sake of simplification of notation, I omit the subscript y
that denotes the threshold of the outcome variable. Denoting by Y the vector of all observations

(911, --9U1g); r the vector of sums of rows (rq,...,7r7) where r; = ijl Uij; ¢ the vector of sums
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of columsn (c1,...,cy) where ¢; = ZZ‘I:1 7ij; and x, a and v the vectors of covariates and fixed

effects, we have that:

PriY | a,, z; 0]
Prl:””c ’ a?’Y?w;IB]’

PT[? | T,c,a,’y,az;,@] =

with Pr{r,c | a,v,z;8] = > Pr[f/ -Y | a,,x; B3], where @Q is the set of all possible

YeQ
combinarions of ;; in Y such that the sum of the rows is given by 7 and the sum of columns by

C.

Following the proposed model for the constructed binary variables y;;:
gijzl{w;jﬁ+ai+yj+aij~20} i=1,....0L,5=1,....J

we have that:
exp(@l,B + a; + )7
1t exp(elB+ o +7;)

Prly; | @, o, 4]

Therefore, the joint probability of all the outcomes, conditional on Zﬁvzl y;; and Zfil Yij is:

i#]
exp(D_z; i TiiB + Dz Uij (i +5))
[Lig;[1 + exp(x};8 + ai + ;)]
~ 1 J  ~ J I~
eXp(Zi;éj yij$;j ) exp(_iy i Zj:l Uij) eXP(Zj:1 Vi D i—1 Yij)
[Tiy;[1 + exp(x};B + a; + 75)]

And analogously for Pr[f’ | a, 7, @; 3]. Then, we can write:

PriY o, v, @8 exp(Xiy GiwhiB) exp(iy i Yooy Gig) exp(3oToy v iy i)

= - = T J = T T =
Z{,GQ PrlY | o, 7, z; 0] Z{/GQ eXp(Zi;ﬁj yz‘ngjﬂ) exp(D ;g Zj:l Yij) eXp(Zj:l Vi iz Yij)

Finally, independently of which set in Q we consider, we have that, by the construction of

I = I ~ J = J ~
the set, > . Uij = Y ;1 Uij and ZFl Uij = ijl ¥ij, such that:
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Pr(Y | o, v, ;8] exp(Xiz; Uiji;P)

~ = _ ~. .
Yieo PrlY |y, z; B 25 eq ¥P(Liz; Uii®iiB)

which does not depend on the fixed effects, rendering the result.
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