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Abstract

The Synthetic Control (SC) method has been a popular and dominant method to evaluate

treatment and intervention effects in the last two decades. The method is powerful yet

very intuitive to use both for empirical researchers and policy experts, but is not without

shortcomings. As a response to this, the new Demeaned SC (DSC) and Synthetic Difference-

in-differences (SDID) approaches were introduced in the literature. In this paper, we

evaluate the relative benefits of using DSC and SDID using in-sample placebo analysis

on the real data on the Brexit referendum, as well as an extensive Monte Carlo study.

We show that the SDID estimator minimizes both the interpolation and the extrapolation

biases, while the conventional SC and matching estimators only minimize the extrapolation

and the interpolation biases, respectively. Overall, using the SDID methodology, we find

that the estimated effect of the Brexit referendum on UK GDP at the end of 2018 and 2019

is higher than previously documented in the literature.
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1. Introduction

As of 2016, many studies have been published on the negative short and long term

consequences of the Brexit referendum1 in 2016 on the UK economy. As opposed to the more

descriptive analysis of some early papers, more recent studies focused on addressing the

economic effects of this event more formally. For example, using a firm-level micro dataset,

Bloom et al. (2019), employed the differences-in-differences (DID) method to investigate

the impact of Brexit on firms. They estimated that Brexit gradually reduced investment

by about 11% over the three years following the vote and reduced productivity by between

2% and 5%.

Born et al. (2019) was one of the early papers investigating the effect of the UK leaving

the EU on GDP while establishing causality without relying on disaggregated data. They

argued that the Brexit vote can be considered a natural experiment to conduct policy

evaluation regarding the counterfactual non-Brexit trajectory of the UK economy. The

quasi-experimental setting advocated by Born et al. (2019) allows for the straightforward

application of several modern methodologies to estimate the treatment effect, one being the

Synthetic Control (SC) method introduced in a series of papers by Abadie and Gardeazabal

(2003), Abadie et al. (2010) and Abadie et al. (2015). Using a particular implementation

of the SC approach with covariates, Born et al. (2019) reported 2.4% decrease in GDP due
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to Brexit at the end of 2018.

Recently proposed extensions of the SC method robustify the approach towards more

general underlying Data Generating Processes (DGP). One such suggestion is the Synthetic

DID estimator (SDID), proposed by Arkhangelsky et al. (2021). This method additionally

allows for both unit fixed effects in the model and time weights in the construction of the

counterfactual, automatically bias-adjusting the counterfactual estimators. Arkhangelsky

et al. (2021) show (both theoretically and numerically) that the SDID estimator possesses

double robustness properties and has the potential to outperform the SC and DID estimators

in terms of bias and RMSE. Moreover, Doudchenko and Imbens (2016) and Ferman and

Pinto (2021) proposed the Demeaned Synthetic Control (DSC) method, which constitutes

a natural middle ground between the SC and the SDID methods. However, the results in

both papers are rather limited with regards to the setup where additional covariates are

available for matching as in Abadie et al. (2010), and Botosaru and Ferman (2017). This

paper fills this gap.

This paper. Overall, the contributions of this paper are two-fold.

1. First of all, using the approach of Kellogg et al. (2021), we decompose the total bias of

the SDID estimator into the interpolation and extrapolation biases. We show that the

SDID estimator minimizes both components, while the conventional SC and matching

estimators only minimize the extrapolation and the interpolation biases, respectively.

Hence, while the time weights in the SDID setup were initially included to account

for differences between the pre-treatment periods and the intervention period, these

weights also minimize the interpolation bias. Moreover, motivated by the common

empirical practice of SC methods, we extend the DSC and SDID methods to allow

for matching on covariates.

2. Finally, we use the three mentioned methods (with and without covariates) to re-
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examine the empirical evidence of Born et al. (2019) on the effect of Brexit on the

UK GDP. For this purpose, we introduce several variations on the model/estimator

specifications with respect to: (i) treatment date;(ii) different approaches to covariates;

(iii) different specification for time weights horizons; (iv) the inclusion of a regularization

parameter in the methods. Thus we avoid the “cherry-picking” problem recently

emphasized by Ferman et al. (2020).

Our results (overall) indicate stronger effect of Brexit than the one described by Born et al.

(2019). We complement the in-sample placebo analysis with a controlled empirical Monte

Carlo study. For this purpose, we control the relative strength of the idiosyncratic and the

common (factor) components as well as covariates. The results indicate that, as predicted,

the SDID approach is mostly beneficial when the common component is non-negligible in

comparison with the idiosyncratic component. At the same time, it is almost cost-free

when the common component is negligible, as long as the idiosyncratic component is not

dominant.

Structure. The remainder of this paper is structured as follows. In Section 2, we introduce

the methods. In Section 3, we provide some insights on the SDID approach. The effect

of Brexit on the UK GDP is re-evaluated based on procedures discussed in Section 4.

Section 5 contains a dedicated empirical Monte Carlo study. Finally, Section 6 concludes.

The Supplementary Online Appendix contains additional theoretical discussions, empirical

robustness checks and further Monte Carlo results.

Notation. A bold letter refers to a vector and a capital bold letter denotes a matrix.

Let ıS be the [S × 1] vector of ones, and WS = IS − S−1ıSı
′
S the corresponding within

transformation matrix. Moreover, the following definitions will be used later: yj = (yj,1, . . . , yj,T0−1)
′

denotes the [(T0−1)×1] vector of outcomes in all time periods prior to treatment for unit j.

Combining all outcomes of control units yields the [(T0−1)×J ] matrix Y = (y2, . . . ,yJ+1).
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The matrix Xj = (x
(1)
j , . . . ,x

(P )
j ) is a [(T0 − 1) × P ]-dimensional matrix with columns

x
(p)
j = (x

(p)
j,1 , . . . , x

(p)
j,T0−1), this matrix stores the values of all covariates prior to treatment

for unit j.

2. Methodology

2.1. The Model

In what follows, we assume that we observe a balanced panel with j = 1, . . . , J+1 units

over t = 1, . . . , T time periods. For each unit j and time period t, the outcome of interest

yj,t, P explanatory variables xj,t, and the binary variable Wj,t are observed. The binary

variable Wj,t equals 1 if the unit j is exposed to treatment at time t, and zero otherwise.

Conforming to the potential outcome framework of Rubin (1974), let the potential

outcomes for unit j in period t under control and treatment,respectively, be denoted by

y0j,t and y1j,t. The treated potential outcome is defined as y1j,t = y0j,t +Wj,tτt, where τt is the

treatment effect at t. Without loss of generality, designate the first unit to be the treatment

unit (j = 1) and the treatment period to be t = T0 < T . Hence, there are J control units

and T − T0 + 1 observations post-treatment. The observed outcomes are

yj,t = Wj,ty
1
j,t + (1−Wj,t)y

0
j,t. (1)

The objective of the analysis is to estimate the treatment effect at any time t ≥ T0.

Evidently, y01,T0 , which is required to compute the treatment effect, is unobserved. All

methods discussed in this paper create counterfactual values ŷ01,t for treated units using a

donor pool of control units, which is then used to estimate the potential outcome of interest

in the absence of treatment.

Using ŷ01,t the parameter of interest can be naturally estimated as,

τ̂t = y11,t − ŷ01,t, t = T0, . . . , T. (2)
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In the remainder of this section, we formally introduce the SC estimator (with and

without matching on covariates) as originally proposed e.g. in Abadie and Gardeazabal

(2003), Abadie et al. (2010) and Abadie et al. (2015). Later on, we discuss the DSC

approach of Ferman and Pinto (2021) and Doudchenko and Imbens (2016), followed by the

SDID method of Arkhangelsky et al. (2021).

There are certain conditions that need to be satisfied for all approaches to be valid. In

particular, it is critical that the setting is such that one can assume that the treatment

mechanism satisfies the “no anticipation” and the “no interference” conditions. That is,

the intervention has no effect on the outcome before the implementation period, and the

treatment does not affect control units before and after treatment. However, in applications,

both effects might be present. Abadie (2021) suggests some empirical strategies to mitigate

the corresponding effects.

Remark 1. In what follows, we will only consider point estimates τ̂t and completely ignore

the topic of inference on such quantities. Inference is generally very hard to conduct for

this type of problem. However, recent work by Chernozhukov et al. (2021) opens up some

interesting possibilities to attack this problem for a restricted class of Data Generating

Processes (DGPs).

2.2. Synthetic Control

The SC method assigns weights to the control units such that the outcome variable for

the treated unit and the weighted average of the control units are approximately equal for

periods prior to treatment. In particular, the unit weights ω = (ω2, . . . , ωJ+1)
′ are chosen

such that the Mean Squared Prediction Error (MSPE) between the outcome of interest over

all periods prior to treatment of the treated unit and of the counterfactual is minimized:

ω̂sc = arg min
ω∈W


T0−1∑
t=1

(
y1,t −

J+1∑
j=2

ωjyj,t

)2
 , (3)
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where W :=
{
ω ∈ RJ : ωj ≥ 0 for each j ∈ {2, . . . , J + 1} and

∑J+1
j=2 ωj = 1

}
.

Using the above estimated weights ω̂sc, the counterfactual (for instance) at the period of

treatment t = T0 is then computed as ŷ0,SC1,T0
=
∑J+1

j=2 ω̂
sc
j yj,T0 . The corresponding treatment

effects estimator is then defined as:

τ̂ scT0 = y1,T0 −
J+1∑
j=2

ω̂scj yj,T0 . (4)

Alternatively, if one restricts her attention to the treatment period T0 only, the above

estimate can be obtained through the regression function:(
τ̂ scT0 , β̂

)
= arg min

τ,β

{
J+1∑
j=1

T0∑
t=1

(yj,t − βt −Wj,tτ)2 ω̂j

}
, ∀ ω̂1 6= 0. (5)

In the original paper of Abadie and Gardeazabal (2003), the main suggested SC implementation

involved an extension of Eq. (3), where one matches not only the outcome of interest, but

also an additional set of covariates. Next, we discuss this extended approach.

Matching on covariates. Let zj be a set of observed covariates for any unit j = 1, . . . , J+1.

Consider a general setting where we search for the weights ω such that the pre-treatment fit

of K variables for z1 is well approximated by the linear combination of un-treated {zj}J+1
j=2 .

In most applications, K is chosen such that K = P + M , where one includes P summary

statistics of P covariates (one for each covariate for simplicity), and M linear combinations

of the pre-treatment outcomes y1. One typical choice is to include each pre-treatment

outcome as a predictor separately. Therefore, M = T0 − 1. As for P , it is a common

practice (e.g.Born et al. 2019) to consider the mean over all pre-treatment periods for all

available regressors. For this standard choice, z1 = (x′1,y
′
1)
′, and similarly for the [K × J ]

matrix Z. In most cases, we would like to weight different elements of z1, as covariates

might be of different predictive power. Denote by v a [K × 1] vector with non-negative

entries, and V = diag(v) the corresponding diagonal matrix.

Abadie et al. (2010) suggested estimating weights v jointly with ω through a nested

optimization procedure. This method estimates the weights v that minimize the MSPE

7



of the pre-treatment outcomes y1 and its counterfactuals over the pre-treatment periods,

while for a given V the weights ω(V ) minimize the distance between the predictors of

the treatment unit and its counterfactuals, weighted by the relative importance of each

predictor. More formally:

ω̂sc(V ) = arg min
ω∈W

(z1 −Zω)′V (z1 −Zω) (6)

V̂ sc = arg min
V ∈V

(y1 − Y ω̂sc(V ))′(y1 − Y ω̂sc(V ). (7)

Here V is the set of K-dimensional diagonal positive semi-definite matrices V = diag(v).

For a given choice of ω̂sc(V̂ sc), the counterfactual and the treatment effect estimate are

obtained analogously to the case without matching on covariates.

Requirements and properties. The key assumption for the SC method is that the vector of

pre-treatment outcomes and covariates (in the case of matching on covariates) of the treated

unit is in (or close to) the convex hull of the vectors of the control units. This ensures the

existence of a weighted average of the control units that is able (approximately) to track

the treated unit. An exact match of the counterfactual to the treated unit in all periods

prior to treatment only occurs when z1 is in the convex hull of Z. In practice, this is very

difficult to achieve, and hence generally weights are found that minimize the distance rather

than create an exact match. Abadie et al. (2010) recommends that if the characteristics

of the treated unit are poorly matched by the synthetic control, the method should not be

used.

Finally, Abadie et al. (2010) provided important results for the bias of the estimator.

Namely, provided that there is a perfect pre-treatment fit in terms of outcomes and covariates,

then the bias of the treatment effect estimator is controlled by the ratio between the variance

of the individual transitory shocks and the number of pre-treatment periods T0, meaning

that the bias converges to zero as T0 → ∞. Moreover, in terms of bias, Kellogg et al.

(2021) show that the SC estimator minimizes exactly the bound on the extrapolation bias
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of the treatment effect, such that if this bound can be made zero, the SC estimator has

zero extrapolation bias. However, it can still be susceptible to interpolation bias, as noted

by Abadie et al. (2015). We discuss further such biases in Section 3.

2.3. Demeaned Synthetic Control

As Ferman and Pinto (2021) propose, the DSC estimator incorporates simple modifications

as compared to the SC estimator. As the name suggests, the pre-treatment outcomes are

demeaned before the estimation of the weights ω, such that:

ω̂dsc = arg min
ω∈W


T0−1∑
t=1

(
(y1,t − y1)−

J+1∑
j=2

ωj(yj,t − yj)

)2
 , (8)

where W :=
{
ω ∈ RJ : ωj ≥ 0 for each j ∈ {2, . . . , J + 1} and

∑J+1
j=2 ωj = 1

}
. Here, the

time-series averages of the form yj are taken over the pre-treatment periods only.

In addition, a bias adjustment term is also incorporated in the definition of the estimated

treatment effect:

τ̂ dscT0
= y1,T0 −

J+1∑
j=2

ω̂dscj yj,T0︸ ︷︷ ︸
ŷ0,dsc1,T0

−

(
y1 −

J+1∑
j=2

ω̂dscj yj

)
︸ ︷︷ ︸
bias adjustment term

. (9)

Intuitively, the bias adjustment term removes the average differences between the observed

treated unit and its counterfactual over the pre-treatment period, adjusting for level imbalances.

When considering the regression function that originates the estimator above, we can see

that the bias-adjustment term arises with the inclusion of a unit fixed-effect αj in Eq. (5):(
τ̂ dscT0

, α̂, β̂
)

= arg min
τ,α,β

{
J+1∑
j=1

T0∑
t=1

(yj,t − αj − βt −Wj,tτ)2 ω̂dscj

}
, ∀ ω̂dsc1 6= 0. (10)

The DSC estimator without matching on covariates is equivalent to the one concurrently

proposed by Doudchenko and Imbens (2016). In essence, they propose to relax several

constraints imposed by the standard SC method, one of them being the no-intercept

restriction in estimating weights. Namely, it is proposed to allow for an intercept weight ω0
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(equivalent to demeaning) in the SC estimation and for a unit fixed effect in the regression

function of the SC estimator. Doudchenko and Imbens (2016) also points out that allowing

for this systematic additive difference between the treatment unit and the control units is

a key feature of the standard Difference-in-differences (DID) method. When allowing for

such terms, we can see the DSC estimator as a generalization of the DID, where the units

are weighted by the estimated ω̂ - instead of fixed weights equal to ω = J−1ıJ . The units-

specific weights turn the DID regression local, while also permitting the lack of parallel

trends, a key feature of the SC method. Indeed, this is seen in Eq. (10), which has a DID

specification but includes a pre-specified unit weight.

Matching on covariates. Even though the DSC estimator was originally proposed for the

case without matching on covariates, we suggest a fairly simple extension to allow for

matching on them. Intuitively, one would think of simply demeaning for each unit z1, y1,

Z and Y . However, we follow the recommendation by Abadie (2021) and only demean the

pre-treatment outcomes since multiple covariates of different scales can be included in z1

and Z. Denoting by z̈1 the vector containing the demeaned pre-treatment outcomes and

the (average of) covariates for the treated unit, and by Z̈ the stacked analogous vectors for

the control units, the nested optimization given by Eqs. (6)-(7) becomes:

ω̂dsc(V ) = arg min
ω∈W

(z̈1 − Z̈ω)′V (z̈1 − Z̈ω) (11)

V̂ dsc = arg min
V ∈V

(y1 − Y ω̂dsc(V ))′WT0−1(y1 − Y ω̂sc(V ). (12)

We propose that the computation of the treatment effects is the same as in Eq. (9), with

the weights estimated above.

Note that the equivalence between the formulations in Doudchenko and Imbens (2016)

and Ferman and Pinto (2021) breaks down in the setting with covariates. In particular,

the approach we consider in Eqs. (6)-(7) is not equivalent to including an intercept in the

inner optimization since the covariates are not taken into account when demeaning.
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Requirements and properties. Ferman and Pinto (2021) proposed the DSC to improve the

SC in terms of bias since they show that the SC estimator is generally biased if the treatment

assignment is correlated with unobserved confounders. To be specific, consider the Data

Generating Process (DGP) of the following linear form

y0j,t = β′xj,t + αj + f ′tγj + εj,t, (13)

with the common factor component f ′tγj as in Bai (2009), Moon and Weidner (2015),

Gobillon and Magnac (2016), Juodis (2020), Fernández-Val et al. (2021), Beyhum and

Gautier (2019), among others.

In particular, considering imperfect pre-treatment fit and a model with non-diverging

common factors2 and a fixed number of control units J , the estimated SC weights (in

general) do not converge in probability to weights that reconstruct the factor loadings of

the treated unit (Γ ′ω̂sc do not match γ1)
3 even if T0 →∞. The SC estimator may also be

biased if the counterfactual fails to reconstruct the time-invariant fixed effect of the treated

unit α1. Therefore, the SC can be biased in settings where the DID is not.

As DSC takes into account not only the differences in levels between unit (αj) but

also unit-specific weights (ω̂dscj ), it can dominate DID. It is also shown that in settings

with both non-diverging and diverging common factors, the diverging elements would not

generate asymptotic biases in the DSC estimator (unlike the SC estimator). However, one

would need that the treatment assignment is uncorrelated with the non-diverging factors

to establish asymptotic unbiasedness.

2Ferman and Pinto (2021) defines non-diverging common factors when the pre-treatment average of

the first and second moments of the common factors converge in probability to a constant.
3Here Γ = (γ2, . . . ,γJ+1)′ and F = (f1, . . . ,fT0−1)′.
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2.4. Synthetic Difference-in-Differences

In addition to the bias-correction term (and, therefore, the inclusion of a unit fixed effect

and an intercept weight) outlined above in the DSC, the SDID proposed by Arkhangelsky

et al. (2021) introduces time weights in the construction of the counterfactual. In particular,

since trends and shocks exist in macroeconomic data not all time periods prior to the

intervention are equally representative for the counterfactual in the treatment period.

The SDID estimator is computed by first estimating the unit weights as implemented

by the DSC in Eq. (8) and additionally (and independently), estimating the time weights

according to:

λ̂sdid = arg min
λ∈L


J+1∑
j=2

(
yj,T0 − yT0 −

T0−1∑
t=1

λt(yj,t − yt)

)2
 , (14)

where L :=
{
λ ∈ RT0−1 : λt ≥ 0 for each t ∈ {1, . . . , T0 − 1} and

∑T0−1
t=1 λt = 1

}
. Here yt

are cross-sectional averages at each point in time t = 1, . . . , T0 without y1,t included.

Precise estimation of time weights λ requires a large cross-sectional donor pool, as formally

discussed by Arkhangelsky et al. (2021) where both T0 →∞ and J →∞.

Once both weights are obtained, the treatment effect for the period T0, for instance, is

estimated as:

τ̂ sdidT0
= y1,T0 −

J+1∑
j=2

ω̂dscj yj,T0︸ ︷︷ ︸
ŷ0,dsc1,T0

−
T0−1∑
t=1

λ̂sdidt

(
y1,t −

J+1∑
j=2

ω̂dscj yj,t

)
︸ ︷︷ ︸

bias adjustment term

. (15)

Note that the bias adjustment term is almost identical to that of the DSC estimator,

with the exception that instead of taking a simple average over the pre-treatment periods,

a weighted average (with estimated weights λ̂) is considered. Hence the approach naturally

interpolates between the DiD type of bias-adjustment (with λT0−1 = 1) and two-way fixed

effects bias adjustment as in Ferman and Pinto (2021), where all pre-treatment λt are equal.
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Moreover, the regression function that corresponds to the estimate above is similar to

its counterpart in Eq. (10), except for the inclusion of the time weights, i.e.:

(
τ̂ sdidT0

, α̂, β̂
)

= arg min
τ,α,β

{
J+1∑
j=1

T0∑
t=1

(yj,t − αj − βt −Wj,tτ)2 ω̂dscj λ̂dscj

}
, ∀ω̂dsc1 6= 0. (16)

In the Supplementary Online Appendix, we also discuss how the definition for the weights

λ can be extended to account for the matching on covariates.

2.5. Penalized Estimation of Unit Weights

The literature on SC methods includes several proposals on how to extend the standard

approach by including an additional ridge penalty (regularization) in the construction of

the estimator. There are several benefits of additional regularization: (i) it increases the

dispersion of weights; and (ii) it guarantees uniqueness of the resulting weights ω. Ferman

and Pinto (2021) argue that with dispersed weights (in population), even the standard SC

estimator does not suffer from the inconsistency problems discussed in Section 2.3. Hence,

regularization just ensures that weights are already sufficiently dispersed in finite samples.

In this paper, we follow the penalty term proposed by Arkhangelsky et al. (2021)4 - in

their case, specifically for the SDID estimator - for all methods discussed in this paper. We

define the DSC weights (and similarly for SC without demeaning):

ω̂dsc = arg min
ω∈W


T0−1∑
t=1

(
(y1,t − y1)−

J+1∑
j=2

ωj(yj,t − yj)

)2
+ ζ2(T0 − 1)‖ω‖22, (17)

where as before W :=
{
ω ∈ RJ : ωj ≥ 0 for each j ∈ {2, . . . , J + 1} and

∑J+1
j=2 ωj = 1

}
,

while the regularization parameter is set as:

ζ = (Tpost)
1/4

√√√√ 1

J (T0 − 2)

J+1∑
j=2

T0−2∑
t=1

(
∆jt − ∆̄

)2
. (18)

4Although the initial idea of penalized weights goes back to (at least) Doudchenko and Imbens (2016).
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Here ∆j,t = yj,t+1 − yj,t and ∆̄ = 1
J(T0−2)

∑J+1
i=2

∑T0−2
t=1 ∆j,t, and Tpost denotes the number of

post-treatment periods.

Note that Tpost differs depending whether one is interested in one or multiple post-

treatment periods. In particular, for the in-sample place tests different Tpost are applicable:

in cases (i) and (ii), it is equal to one, since we match only in one post-treatment period;

in case (iii), up to the period of interest when the treatment effects are being assessed).

Remark 2. We also consider the same regularization approach for the remaining methods

discussed in this paper. For the nested optimizations considered when matching on covariates,

this term is introduced in the inner optimization, where it is optimized over the weights

ω. Moreover, as Arkhangelsky et al. (2021), we do not include a ridge penalization for the

estimation of the time weights. In the preliminary version of the paper, we also considered

penalized time weights λ, but in the context of our empirical applications, it plays no role.

3. Discussion

3.1. Bias-reducing Properties of the SDID

Recall the DGP as in Eq. (13). As pointed out by Ferman and Pinto (2021), for

the estimator DSC to be unbiased the difference between the counterfactual and treated

components of common shocks, f ′t(γ1−Γ ′ω̂dsc), should be small for all t. However, since the

goal is to well approximate the entire unobserved factor component at the post-treatment

periods only, the relevant biases will also be decreased when F ′λ̂sdid approximates fT0 .

In other words, even if one set of weights fails to remove the biases from the correlation

of treatment assignment to the unobserved components, the combination of both weights

might still guarantee a decrease in biases. This indicates the double robustness property

of SDID. Therefore, there are three bias reduction components in the SDID: (i) the double

differencing - similar to the DID; (ii) the unit weights - similarly to SC; and (iii) the time

weights.
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3.2. Interpolation and Extrapolation Biases

In this section, we analyze and compare the biases of the SC, the DSC, and the SDID

estimators. To be specific the bias is defined as the difference Bias1,T0 = y01,T0− ŷ
0
1,T0

for any

given estimator of ŷ01,T0 . In our analysis, we follow Kellogg et al. (2021) by decomposing

the bias of the synthetic control estimator into interpolation and extrapolation bias. To

simplify the notation, we assume that y0j,t is some general deterministic function of observed

and unobserved covariates xj,t, i.e. y0j,t[xj,t]. This way we also accommodate the common

factor components f ′tλj in the definition of xj,t.

First, consider the SC estimator. For this setup, the bias can then be decomposed as:

y01,T0 − ŷ
0,sc
1,T0

= y01,T0 [x1,T0 ]−
J+1∑
j=2

ω̂scj y
0
j,T0

[xj,T0 ]

=

(
y01,T0 [x1,T0 ]− y01,T0

[
J+1∑
j=2

ω̂scj xj,T0

])
︸ ︷︷ ︸

extrapolation bias

+

(
y01,T0

[
J+1∑
j=2

ω̂scj xj,T0

]
−

J+1∑
j=2

ω̂scj y
0
j,T0

[xjT0 ]

)
︸ ︷︷ ︸

interpolation bias

.

(19)

By definition, as it is the minimizer of the MSPE, the SC estimator minimizes the extrapolation

bias. More specifically, when the treated unit falls within the convex hull of control units

such that a perfect fit of the counterfactual can be constructed, the extrapolation bias is,

by definition, zero. However, Kellogg et al. (2021) show that the SC will avoid interpolation

bias only if y0j,t[xj,t] is a linear function in xj,t. More specifically, assuming that x1,T0 falls

in the convex hull of (x2,T0 , . . . ,xJ+1,T0)
′, then the SC estimator avoids interpolation bias

if and only if:

J+1∑
j=2

ω̂scj y
0
j,T0

[xj,T0 ] = y0j,T0 [x1,T0 ] = y0j,T0

[
J+1∑
j=2

ω̂scj xj,T0

]
, (20)

where we assume that the functional form of y0j,T0 [·] for j = 2, . . . , J + 1 and y01,T0 [·] are the

same. Not very surprisingly, the bias is larger when the paths of the dependent variable
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are highly nonlinear in xj,t (as documented by the finite sample evidence in Kellogg et al.

2021).

The SDID method poses a solution to the susceptibility of the synthetic control method

to interpolation bias. For simplicity, assume that the treated unit falls within the convex

hull of the control units and hence the extrapolation bias is zero, then the bias simplifies

to:

y01,T0 = ŷ0,sc1,T0
+

(
y01,T0

[
J+1∑
j=2

ωscj xj,T0

]
−

J+1∑
j=2

ωscj y
0
j,T0

[xj,T0 ]

)
. (21)

Conforming with the notation of Kellogg et al. (2021), the SDID estimator defined in

Eq. (15) is given by:

ŷ0,sdid1,T0
= ŷ0,dsc1,T0

+

T0−1∑
t=1

λ̂sdidt

(
y1,t[x1,t]−

J+1∑
j=2

ω̂dscj yj,t[xj,t]

)
. (22)

The SDID estimator is therefore very similar to the expression given in Eq. (21).5 First note

that under the assumption of zero extrapolation bias, it holds that
∑J+1

j=2 ω
sc
j xj,t = x1,t for all

t and hence y01T0 [
∑J+1

j=2 ω
sc
j xj,T0 ] = y01,T0 [x1,T0 ]. Moreover, the time weights λ̂ are optimized

such that the weighted average of pre-treatment periods is most representative of the actual

treatment period t = T0 (up to a constant). Therefore, while the unit weights minimize

the extrapolation bias, the time weights introduced in the SDID estimator minimize the

interpolation bias.

The interpolation bias of the SDID estimator is zero if the weights λ̂ exist such that

the difference in the outcome of the treated unit and the counterfactual in the treatment

period falls within the convex hull of the difference between the treated unit and the

5One difference between the two equations is the fact that we use the DSC weights for the SDID

estimate, but the same argument holds for the DSC estimator. Namely, inspecting Eq. (9), the DSC

estimator would only minimize interpolation biases if a simple average of the pre-treatment periods well

approximates the post-treatment period.
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counterfactual in the periods prior to treatment up to a constant. More generally, similar

to the construction of the unit weights for the counterfactual, if a perfect fit does not exist,

time weights are found such that the distance is minimized. The SDID estimator is able to

control for the interpolation bias of the SC estimator.

Other estimators proposed in the literature also aim to reduce the interpolation bias,

e.g., in Kellogg et al. (2021) and Abadie and LHour (2021). The matching and synthetic

control (MASC) estimator of Kellogg et al. (2021) relies on a model averaging of the SC

estimator and matching estimators. Since the latter minimizes interpolation and the former

extrapolation biases, the resulting estimator carries both properties. The penalized SC of

Abadie and LHour (2021), even though it focuses more on providing a unique solution

for the estimated unit weights, also reduces the interpolation bias by penalizing covariate

discrepancy between the treated unit and each unit that contributes to the counterfactual

(and not only the discrepancy between the treated unit and the counterfactual as a whole,

as in the standard SC). Therefore, it is claimed that it reduces interpolation biases by

assigning more weight to units that are close to the treated unit in the space of matching

covariates. The disadvantage of such estimators is that they rely on tuning parameters,

requiring cross-validation techniques.

Another estimator that focuses on reducing biases is the augmented synthetic control

(ASCM) of Ben-Michael et al. (2021). However, it mainly corrects for biases arising from

to imperfect pre-treatment fit and allows for more extrapolation. It relies on an outcome

model to estimate such bias and uses it to de-bias the SC estimate. The drawback of this

method is that it relies on a correct specification for the outcome model.
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4. The Effect of the Brexit Referendum on the UK GDP Re-evaluated

4.1. The Dataset

The dataset we use comprises quarterly data for the GDP and six covariates for the 36

OECD countries, including the UK, for 1995:Q1-2020:Q4. The six covariates considered are:

Consumption, Investment, Exports, Imports, Labour productivity growth, and Employment

share.6 All variables are standardized with respect to the mean and log-transformed to

adjust for differences in size between the units. After removing all countries with missing

data, 23 potential control/donor units are left, as in Born et al. (2019).

Despite the minor assumptions required to perform synthetic control estimation, the

identification strategy of Born et al. (2019) is built upon the two key foundations:

1. First, the treatment date is set to be the date of the referendum in 2016:Q3.7 More

importantly, as the outcome of the vote was largely unexpected, it is reasonable to

consider it a natural experiment.

2. Second, the voting behaviour was largely driven by political considerations (i.e. ,

re-claiming full freedom for political decision-making) rather than (macro-) economic

reasons. Even though voting behaviour differed systematically among various socio-

economic groups, the factors among which the voting behaviour differed (such as

educational attainment, demography and regional industry structure) were claimed

to be unlikely to impact macroeconomic performance.

6The variable Labour productivity growth is constructed by taking the log difference of quarterly real

GDP and quarterly total employment, while the Employment share is the ratio between total employment

and the working-age population.
7Notice that in Born et al. (2019) the authors mention that the treatment date is set to 2016:Q2,

however, in their definition the treatment is materialized only in the period after the treatment date, that

is, 2016:Q3. In our setting, we define that the treatment effect materializes in the treatment period.
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These two assumptions are essential for the identification of the counterfactual trend

that the UK’s GDP would have followed if the referendum had not been held (or if it had

failed).

4.2. The Zoo of Specifications and Methods

Methods. We consider the SC approach of Born et al. (2019) (SC(B)) as the benchmark

for your comparative analysis. Their method differs with respect to the standard SC with

matching on covariates since they consider both in the inner and the outer optimization

in Eqs. (6)-(7) vectors and matrices stacking the pre-treatment outcomes and the average

of (or last) covariates for the treated and control units, respectively. It can be argued,

that the approach of Born et al. (2019)ensures that (by construction) the covariates are

non-redundant. Importantly, this points out to the fact that the theoretical predictions of

Kaul et al. (2021) do not hold for the SC(B) estimation method, as already acknowledged

by Born et al. (2019).

In this paper, we also consider penalized (ridge) optimization procedures for ω and λ.

As mentioned originally by Doudchenko and Imbens (2016), the inclusion of such a penalty

leads to a higher dispersion, ensures the uniqueness of the weights, and delivers better

interpretability of the unit weights. For the sake of simplicity, we adopt the penalization

approach of Arkhangelsky et al. (2021) for unit weights in all estimators. Further discussion

and the corresponding empirical result are provided in the Supplementary Online Appendix.

We estimate the SC(B), SC, and DSC methods using the concomitant synth and synthdid

packages in R; see Abadie et al. (2010) and Arkhangelsky et al. (2021) for more details.

Note that the package synthdid has one key difference with respect to the implementation

of Born et al. (2019), related to the initialization for the v weights. While the latter

uses the relative standard deviation of variables for the initialization, the former uses the

initialization that provides the lowest MSPE between a regression-based initialization and
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equal weights. This justifies why our estimates for the SC(B) method might differ slightly

compared to the results in the original paper.

Specifications. In this paper, we extend the specifications considered by Born et al. (2019)

in several ways:

i) We consider two possible treatment periods - 2016:Q2 and 2016:Q3. This is done for

two reasons: due to the ambiguity of the date of the Brexit vote (at the end of 2016:Q2)

and to consider possible anticipation effects.

ii) For the specifications with covariates, we also allow for the use of only the single most-

recent period for matching. This is mostly done to better account for the unit-root

properties of the included covariates.8

iii) When constructing λ weights for SDID, we allow for the possibility of matching on the

first period of treatment (case (i)); on the average of post-treatment periods until the

periods in which the treatment effect is being evaluated, that is, 2018:Q4 and 2019:Q4

(case (ii)); and on the outcomes in the periods in which the treatment effect is being

evaluated only (case (iii)).

iv) Given the results of Kaul et al. (2021) (on the irrelevance of covariates with all

pre-treatment outcomes included in the matching algorithm), we consider different

matching schemes with all pre-treatment periods (the standard approach), as well

as half pre-treatment periods and the last pre-treatment period (one pre-treatment

period). These specifications are used to investigate the relevance of matching on

covariates.

8However, we note that this specification should be mostly seen as an illustration for the possibilities

discussed in Kaul et al. (2021), rather than reflecting the actual practise of using covariates in SC.
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The extended set of specifications is mainly considered to avoid the cherry-picking problem

recently highlighted by Ferman et al. (2020).

Despite the discussion in Section 2.4 on SDID with matching on covariates for λ, in

practice, we only match on the outcome of interest. The reasons are twofold: (i) the

estimates indicate that matching or not on covariates, the time weights are almost always

entirely assigned to the last pre-treatment period; (ii) for the unit weights there is not a

well-defined “last covariate” value.

4.3. Empirical Results

Our main results are summarized in Tables 1 - 3. Here, we report the estimated

percentage differences in GDP (counterfactual minus the UK) at the end of 2018 and

2019.

Equivalent to the original result of Born et al. (2019), the SC(B) with covariates

(including all the pre-treatment periods and considering mean of covariates with treatment

date 2016:Q3) estimated a reduction of 2.4% at the end of 2018. This number is smaller

than the corresponding numbers from the competing procedures.

Overall, under the remaining specifications, the same pattern is observed - i.e., the

remaining methods points to a larger effect in magnitude compared to the SC(B) method -

with only two (non-consequential) exceptions. Importantly, considering the initial estimate

of Born et al. (2019) of 2.4%, the SDID estimation with or without covariates point out to

a much bigger economic loss due to Brexit under all specifications (except one in Table 3).

Other important conclusions from Tables 1 - 3 are: (i) irrespective of the method and/or

specification considered the estimated gap in the GDP is increasing over time, suggesting a

clear structural shift in the growth of the GDP; (ii) for the SDID approach (with or without

covariates), the estimated effects are bigger when considering 2016:Q2 as treatment period

compared to 2016:Q3. Therefore, the initial choice of treatment period is not innocuous.
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All in all, there are several ways in which slightly different specifications compared to

the one taken into account by Born et al. (2019) may lead to a more sizeable treatment

effect.
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Table 1: The estimated percentage differences in GDP between the counterfactuals and the UK including all pre-treatment periods as predictors.

SC(B) SC SC cov. DSC DSC cov. SDID (i) SDID cov. (i) SDID (ii) SDID cov. (ii) SDID (iii) SDID cov. (iii)

Mean of covariates - Treatment period 2016:Q2

2018:Q4 2.40 3.12 3.09 3.04 3.33 3.17 3.32 3.05 3.26 3.05 3.26

2019:Q4 3.60 4.28 4.23 4.18 4.56 4.31 4.54 4.19 4.48 4.19 4.48

Mean of covariates - Treatment period 2016:Q3

2018:Q4 2.43 3.06 3.11 2.98 2.90 2.76 2.75 2.79 2.78 2.79 2.78

2019:Q4 3.61 4.20 4.28 4.12 4.00 3.89 3.85 3.92 3.89 3.92 3.89

Last covariates - Treatment period 2016:Q2

2018:Q4 1.64 3.12 2.77 3.04 3.33 3.17 3.41 3.05 3.32 3.05 3.32

2019:Q4 2.53 4.28 4.05 4.18 4.49 4.31 4.58 4.19 4.49 4.19 4.49

Last covariates - Treatment period 2016:Q3

2018:Q4 2.31 3.06 1.75 2.98 3.25 2.76 2.95 2.79 2.96 2.79 2.96

2019:Q4 3.37 4.20 2.87 4.12 4.41 3.89 4.10 3.92 4.12 3.92 4.12

Note: The results represent losses in percentages. The methods without covariates, SC, DSC, SDID (i), SDID (ii) and SDID (iii) naturally show the

same results regardless if mean or last covariates are considered.
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Table 2: The estimated percentage differences in GDP between the counterfactuals and the UK including half pre-treatment periods as predictors.

SC(B) SC SC cov. DSC DSC cov. SDID (i) SDID cov. (i) SDID (ii) SDID cov. (ii) SDID (iii) SDID cov. (iii)

Mean of covariates - Treatment period 2016:Q2

2018:Q4 1.33 3.12 1.34 3.04 3.15 3.17 3.31 3.05 3.33 3.05 3.33

2019:Q4 2.43 4.28 2.44 4.18 4.41 4.31 4.57 4.19 4.58 4.19 4.58

Mean of covariates - Treatment period 2016:Q3

2018:Q4 1.33 3.06 1.37 2.98 2.80 2.76 2.60 2.79 2.61 2.79 2.61

2019:Q4 2.44 4.20 2.48 4.12 3.97 3.89 3.77 3.92 3.78 3.92 3.78

Last covariates - Treatment period 2016:Q2

2018:Q4 1.55 3.12 2.53 3.04 2.91 3.17 3.14 3.05 3.03 3.05 3.03

2019:Q4 2.41 4.28 3.37 4.18 3.98 4.31 4.21 4.19 4.10 4.19 4.10

Last covariates - Treatment period 2016:Q3

2018:Q4 2.42 3.06 2.46 2.98 3.12 2.76 2.74 2.79 2.75 2.79 2.75

2019:Q4 3.49 4.20 3.52 4.12 4.24 3.89 3.86 3.92 3.86 3.92 3.86

Note: For methods without covariates the results are equivalent to those in Table 1. See Table 1 for more discussion.
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Table 3: The estimated percentage differences in GDP between the counterfactuals and the UK including one pre-treatment periods as predictor.

SC(B) SC SC cov. DSC DSC cov. SDID (i) SDID cov. (i) SDID (ii) SDID cov. (ii) SDID (iii) SDID cov. (iii)

Mean of covariates - Treatment period 2016:Q2

2018:Q4 1.24 3.12 0.41 3.04 0.98 3.17 2.15 3.05 2.20 3.05 2.20

2019:Q4 2.18 4.28 1.39 4.18 2.05 4.31 3.22 4.19 3.27 4.19 3.27

Mean of covariates - Treatment period 2016:Q3

2018:Q4 0.99 3.06 1.49 2.98 1.34 2.76 1.71 2.79 1.75 2.79 1.75

2019:Q4 1.91 4.20 2.48 4.12 2.44 3.89 2.81 3.92 2.85 3.92 2.85

Last covariates - Treatment period 2016:Q2

2018:Q4 2.74 3.12 3.11 3.04 2.88 3.17 3.14 3.05 2.83 3.05 2.83

2019:Q4 4.15 4.28 4.12 4.18 3.97 4.31 4.22 4.19 3.91 4.19 3.91

Last covariates - Treatment period 2016:Q3

2018:Q4 2.48 3.06 2.88 2.98 2.58 2.76 2.18 2.79 2.18 2.79 2.18

2019:Q4 3.58 4.20 3.90 4.12 3.59 3.89 3.18 3.92 3.18 3.92 3.18

Note: For methods without covariates the results are equivalent to those in Table 1. See Table 1 for more discussion.
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Figure 1 depicts some of the patterns we discussed above. Overall, all methods generate

counterfactual trends that are able to replicate the GDP trend of the UK prior to the

treatment date. In addition, all methods predict that the GDP of the UK would have

been higher if they had not left the EU, but there are some key discrepancies between the

methods. In the specifications considering the mean of covariates, the SC(B) and SC seem

to underestimate the UK GDP, and it carries over to post-treatment periods. The DSC and

SDID estimates are nearly identical to the SC (in terms of trajectory), but in general (with

some exceptions when considering matching on the last covariates), shifted upwards, as a

result of the constant bias adjustment over time. Notably, when the average of covariates is

used in estimation, the bias adjustment seems to be much bigger in magnitude, as compared

to other specifications. Hence, the inclusion of covariates and/or time weights does not have

a homogeneous effect on results.

We also note that for numerical reasons, the theoretical prediction of Kaul et al. (2021)

does not always hold across all specifications. In particular, even when considering all

pre-treatment periods, there are still differences in the estimated effects with or without

covariates. However, we can see that, especially for the DSC and the SDID methods the

differences in the estimated treatment effects are larger when comparing matching or not

matching on covariates for the case where one pre-treatment period is considered. In the

Supplementary Online Appendix we show how estimated v and the corresponding ω weights

impact these conclusions.

For the sake of illustration, in Table 4, we present estimated weights for one of our

specifications. In particular, we see that for the SC, DSC and SDID methods, the estimated

unit weights are quite similar when considering no covariates or matching on covariates with

all pre-treatment periods. However, when considering only half or one pre-treatment period,

the resulting ω weights differ substantially. In the latter cases, the most striking result is

that a much bigger weight is assigned to the U.S. As we discuss in the Supplementary
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(b) Counterfactuals (other than SC(B)) without covariates.
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(c) Counterfactuals with the mean of covariates.
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(d) Counterfactuals with the last value of covariates.

Figure 1: Estimated counterfactuals for treatment period 2016:Q3 and the half of pre-treatment outcomes.
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Online Appendix, large weights of the United States and Hungary are not specific to the

exact specification considered and are a general feature of this empirical problem.
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SC(B) all SC(B) half SC(B) one SC no cov SC all SC half SC one DSC no cov DSC all DSC half DSC one

Australia 0.0000 0.0000 0.0000 0.0052 0.0005 0.0000 0.0002 0.0075 0.0000 0.0000 0.0000

Austria 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000

Belgium 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0036 0.0000 0.0000 0.0000 0.0001

Canada 0.0000 0.0001 0.0000 0.1612 0.1734 0.0000 0.0004 0.1916 0.2103 0.0705 0.0001

Finland 0.0000 0.0000 0.0000 0.0021 0.0002 0.0000 0.0003 0.0031 0.0103 0.0000 0.0000

France 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

Germany 0.0458 0.1145 0.0000 0.0026 0.0000 0.1012 0.0004 0.0000 0.0000 0.0000 0.0379

Hungary 0.1078 0.0001 0.0000 0.2186 0.2262 0.0000 0.0011 0.2311 0.2258 0.1697 0.0000

Iceland 0.0089 0.0682 0.0000 0.0000 0.0076 0.0740 0.0006 0.0000 0.0000 0.0350 0.0569

Ireland 0.0114 0.0001 0.0000 0.0543 0.0462 0.0000 0.0002 0.0503 0.0469 0.0305 0.0000

Italy 0.1744 0.1631 0.1667 0.0353 0.0013 0.1673 0.2098 0.0334 0.0373 0.0471 0.1773

Japan 0.0000 0.0000 0.0000 0.1773 0.1821 0.0000 0.0000 0.1842 0.1838 0.1884 0.0000

Korea 0.0000 0.0000 0.0000 0.0030 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

Luxembourg 0.0000 0.0483 0.0310 0.0000 0.0000 0.0371 0.0535 0.0000 0.0000 0.0000 0.0382

Netherlands 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0013 0.0000 0.0001 0.0000 0.0000

New Zealand 0.1432 0.0001 0.0586 0.0000 0.0000 0.0000 0.1183 0.0000 0.0144 0.0001 0.0001

Norway 0.0001 0.0000 0.0000 0.1256 0.1133 0.0000 0.0001 0.1208 0.1042 0.0000 0.0000

Portugal 0.0000 0.0001 0.0000 0.0123 0.0407 0.0000 0.0024 0.0037 0.0011 0.0000 0.0000

Slovak Republic 0.0000 0.0000 0.0000 0.0031 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000

Spain 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

Sweden 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000

Switzerland 0.0000 0.0000 0.1283 0.0000 0.0000 0.0000 0.0169 0.0000 0.0000 0.0000 0.0001

United States 0.5083 0.6052 0.6153 0.1994 0.2083 0.6203 0.5893 0.1740 0.1655 0.4587 0.6891

Table 4: Estimated ω weights considering 2016:Q3 as treatment period and mean of covariates. Weights > 0.1 are highlighted in Bold.
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In this application, the time weights for SDID are always completely assigned to the last

pre-treatment period. This outcome can be explained by the random-walk behaviour of

the GDP series, see Online Supplementary Appendix for some visual evidence. This result

can be seen as a pitfall of the SDID estimator when considering outcome levels. One might

consider, alternatively, an empirical exercise with data in changes. However, a key feature of

SC method is that the counterfactual estimate should actually match pre-exposure trends.

Therefore, it is more intuitive and, in practice, more acceptable to match the levels of the

series. We do not deviate from this practice.

The scatter plots in Figure 2 summarize the findings of this Zoo of specifications and

methods (this includes all the specifications considered in the main text and in the Supplementary

Online Appendix). Overall, we find that, in general, the estimated treatment effects are

bigger in magnitude when: applying the SDID method as opposed to the SC(B) or SC

methods; no covariates are taken into account when matching; and no penalty regularization

is introduced.

4.4. In-sample Placebo Analysis

Besides pointing out the differences among the estimators, no overall conclusions about

the relative performance of the methods can be drawn from the above analysis. In what

follows, we evaluate the relative performance of the considered procedures using the in-

sample (time-series) placebo analysis as in Born et al. (2019).

The idea of the in-sample placebo analysis is to advance the treatment date to t = T ′0 <

T0 and construct a counterfactual using the data up to that date. The GDP level of the

counterfactual at the artificial treatment date is then computed (ŷ1,T ′
0
) and compared to the

actual realization (y1,T ′
0
). Due to the no anticipation assumption for T ′0 < T0, the GDP level

of the estimated counterfactual should be sufficiently close to the actual (observed) GDP

value. This exercise is repeated for all time periods using the expanding window approach
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(c) No covariates vs. mean of covariates in estimation.
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(d) No covariates vs. last covariate in estimation.

Figure 2: Scatter plots of estimated treatment effects, while keeping the remaining specifications/methods

constant.
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in the interval 2010:Q1-2014:Q4 one period at the time.

Note that for this placebo study we allow for the previously mentioned three different

cases on how one considers post-treatment periods in the construction of the time weights

λ for SDID. More specifically:

i) The first treatment period and evaluating the treatment effect in this period.

ii) The fourth quarter after the treatment period and computing the treatment effect for

the end of the fourth quarter.

iii) The average over four quarters after the treatment period and computing the treatment

effect for the end of the fourth quarter.

We consider these three settings since it can be that the time weights would not always be

completely assigned to the last pre-treatment period. Thus, the cases above may lead to

different estimates of treatment effects.

The results in Table 5 are not unexpected. In particular, the SC(B) generally performs

the worst, while the SDID method (with or without covariates) for each specification always

performs better. Importantly, the performance of the SDID is almost invariant to the

inclusion of covariates. Strikingly, when considering half of the pre-treatment periods, the

inclusion of covariates might even be detrimental for some of the methods. Finally, while

the inclusion of the bias correction term in the DSC is sometimes beneficial, the inclusion

of time effects (SDID) seems to have a larger effect an improving the estimates.
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Table 5: In-sample placebo analysis across periods for 2010:Q1-2014:Q4.

SC(B) SC SC cov. DSC DSC cov. SDID (i) SDID cov.(i) SDID (ii) SDID cov.(ii) SDID (iii) SDID cov.(iii)

Mean of covariates - All pre-treatments

RMSE 0.0101 0.0089 0.0092 0.0087 0.0106 0.0067 0.0063 0.0134 0.0131 0.0134 0.0132

MAB 0.0090 0.0072 0.0076 0.0070 0.0087 0.0037 0.0040 0.0111 0.0114 0.0111 0.0115

MedAB 0.0096 0.0055 0.0071 0.0052 0.0074 0.0016 0.0021 0.0103 0.0112 0.0107 0.0112

Last covariates - All pre-treatments

RMSE 0.0117 0.0089 0.0076 0.0087 0.0098 0.0067 0.0068 0.0134 0.0140 0.0134 0.0141

MAB 0.0098 0.0072 0.0057 0.0070 0.0078 0.0037 0.0041 0.0111 0.0123 0.0111 0.0123

MedAB 0.0093 0.0055 0.0048 0.0052 0.0055 0.0016 0.0020 0.0103 0.0113 0.0107 0.0115

Mean of covariates - Half of the pre-treatments

RMSE 0.0108 0.0089 0.0107 0.0087 0.0104 0.0067 0.0056 0.0134 0.0100 0.0134 0.0100

MAB 0.0098 0.0072 0.0092 0.0070 0.0091 0.0037 0.0038 0.0111 0.0081 0.0111 0.0082

MedAB 0.0099 0.0055 0.0101 0.0052 0.0088 0.0016 0.0015 0.0103 0.0066 0.0107 0.0067

Last covariates - Half of the pre-treatments

RMSE 0.0131 0.0089 0.0066 0.0087 0.0083 0.0067 0.0059 0.0134 0.0117 0.0134 0.0118

MAB 0.0106 0.0072 0.0053 0.0070 0.0067 0.0037 0.0035 0.0111 0.0096 0.0111 0.0096

MedAB 0.0101 0.0055 0.0045 0.0052 0.0055 0.0016 0.0017 0.0103 0.0083 0.0107 0.0087

Mean of covariates - One of the pre-treatments

RMSE 0.0085 0.0089 0.0071 0.0087 0.0096 0.0067 0.0043 0.0134 0.0075 0.0134 0.0075

MAB 0.0072 0.0072 0.0059 0.0070 0.0089 0.0037 0.0035 0.0111 0.0060 0.0111 0.0061

MedAB 0.0077 0.0055 0.0065 0.0052 0.0090 0.0016 0.0028 0.0103 0.0051 0.0107 0.0051

Last covariates - One of the pre-treatments

RMSE 0.0089 0.0089 0.0057 0.0087 0.0059 0.0067 0.0040 0.0134 0.0095 0.0134 0.0095

MAB 0.0076 0.0072 0.0049 0.0070 0.0045 0.0037 0.0028 0.0111 0.0076 0.0111 0.0077

MedAB 0.0064 0.0055 0.0038 0.0052 0.0036 0.0016 0.0020 0.0103 0.0050 0.0107 0.0053
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Remark 3. In the Supplementary Online Appendix, we provide additional robustness

checks with a restricted set of donor countries. Overall, we find that our conclusions remain

unaffected.

5. Monte Carlo Simulations

In this section, we supplement the in-sample placebo analysis with a dedicated empirical

Monte Carlo study. For the data generating process (DGP), we consider the factor model

used by Abadie et al. (2010) and Kaul et al. (2021), given by:

y0j,t = δt + θ′tcj + γtµj + εj,t. (23)

Here y0j,t denotes the outcome in the absence of treatment, δt is the common time effects

component, θt is a vector of P -dimensional time-varying coefficients, one for each covariate

given by the vector cj, γtµj is a typical interactive unobserved fixed-effect term, and εj,t

is the idiosyncratic error term with zero mean and variance σ2, where we consider σ ∈

{0.25, 1}.

The values of δt and θt are calibrated based on our empirical setting, see e.g. Ferman

and Pinto (2021), Kaul et al. (2021), Arkhangelsky et al. (2021), who also consider real

GDP per capita as the outcome of interest in their empirical Monte Carlo studies. In

particular, we take the values of cj as the time-averages of the observed covariates over

the period 2010:Q2 and 2016:Q1, which is also the time span of the placebo study in the

empirical section. The common factor γt is generated deterministically as γt = tγ/T0,
9 for

γ ∈ {0, 0.25, 1, 1.5}. As for the factor loadings, for all we set for j = 1, . . . , J + 1 we set

µj ∼ U [0, 1]. Note that the larger the value of σ and/or γ, the lower the relative importance

9In the preliminary version of the paper we also considered a setup with simple linear trend γt = t, but

as the results are qualitatively similar we only report the case of “bounded” common factors considered

here.
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of observed covariates.

The number of Monte Carlo replications is set to M = 1000 for all specifications.

5.1. RMSE Decomposition Details

In what follows, we adapt the approach of Kaul et al. (2021) and decompose the SC

estimation error into three components: (i) error originating from covariates; (ii) error

originating from the common factor component; (iii) from the presence of the idiosyncratic

error term. In particular, observe that:

τ̂ scT0 = θ′T0

(
c1 −

J+1∑
j=2

ω̂scj cj

)
︸ ︷︷ ︸

(i)covariates

+ γT0

(
µ1 −

J+1∑
j=2

ω̂scj µj

)
︸ ︷︷ ︸

(ii)commonfactor

+ ε1,T0 −
J+1∑
j=2

ω̂scj εj,T0︸ ︷︷ ︸
(iii)idiosyncratic

. (24)

Evidently, similar decomposition can be also considered for the DSC estimator:

τ̂ dscT0
=

(
θT0 −

1

T0 − 1

T0−1∑
t=1

θt

)′(
c1 −

J+1∑
j=2

ω̂dscj cj

)

+

(
γT0 −

1

T0 − 1

T0−1∑
t=1

γt

)(
µ1 −

J+1∑
j=2

ω̂dscj µj

)

+ ε1,T0 −
J+1∑
j=2

ω̂dscj εj,T0 −
1

T0 − 1

T0−1∑
t=1

(
ε1,t −

J+1∑
j=2

ω̂dscj εj,t

)
. (25)

As well as the SDID estimator:

τ̂ sdidT0
=

(
θT0 −

T0−1∑
t=1

λ̂sdidt θt

)′(
c1 −

J+1∑
j=2

ω̂dscj cj

)

+

(
γT0 −

T0−1∑
t=1

λ̂sdidt γt

)(
µ1 −

J+1∑
j=2

ω̂dscj µj

)

+ ε1,T0 −
J+1∑
j=2

ω̂dscj εj,T0 −
T0−1∑
t=1

λ̂sdidt

(
ε1,t −

J+1∑
j=2

ω̂dscj εj,t

)
. (26)

5.2. The Results

In what follows, we discuss the Monte Carlo results as summarized by means of the

RMSE in Table 6. We also report contributions of the idiosyncratic, covariates, and the

common factors parts for the total RMSE in Tables 7-9.
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Table 6 shows that overall, when σ = 1, the SC(B) taking into account all covariates,

the SC without covariates and the DSC also without covariates perform the best. However,

while those methods are quite sensitive to the inclusion of covariates (in particular, the SC

and the DSC methods perform worse when covariates are included), the results obtained

with SDID are less sensitive.

For σ = 0.25, the performance of all methods is more comparable, and the results are

less sensitive to covariates. Moreover, it is noticeable that as γ increases, the SC(B) and

the SC methods perform worse, while the DSC and the SDID methods are less sensitive.

This reinforces the idea that the latter estimators provide a better match in terms of the

unobserved common factors.

Thus, once σ decreases, i.e. the relative importance of the idiosyncratic component is

lower, the performance of the SDID methods seems to approach that of SC. This observation

is supported by the RMSE decomposition results in Tables 7-9. From those tables, it is

clear that for these designs, the noise associated with εj,t dominates all other components,

especially for σ = 1. As such, additional noise from (associated with the estimation

uncertainty of the time-weights) εj,t for the SDID outweighs the relative benefits of SDID

in terms of the lower RMSE associated with the other two components. However, it is clear

that for σ = 0.25, the additional noise from the idiosyncratic component in the SDID is

more comparable to that of other methods. As a result, the remaining components of the

RMSE that display a better performance for this estimator are not dominated.

In particular, for the part of the error term stemming from matching on covariates,

when σ = 1, the DSC and the SDID, taking into account one covariate perform the best.

We note that both the SC(B) and the SC methods improve if only one pre-treatment period

is considered, while for the DSC and the SDID, the effect is moderate. When σ = 0.25,

the inclusion of covariates is less important for all methods. Moreover, the SDID method

provides the lowest RMSE in this case, especially for larger γ.
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Results in Table 8 confirm our prior expectations that DSC and SDID methods improve

upon the SC methods in terms of the error associated with the common factor components.

In some cases, the improvement is as large as 50% in the (component) RMSE terms. When

σ = 1, it is clear that all estimators perform worse as γ increases. However, as expected,

the SDID shows a smaller impairment in terms of the RMSE (in comparison to other levels

of σ). Surprisingly, for σ = 0.25, the performance of SDID does not deteriorate for larger

values of γ, in contrast to all other methods.

Turning our attention to the question of the relative benefits of matching on covariates,

we first consider the results in Table 6. We do not document benefits of matching on

covariates, supporting our in-sample placebo results, if the total RMSE values are analyzed.

However, Table 7 shows that for the SC, DSC, and SDID, in general, matching on one

covariate leads to the smallest RMSE for the part of the error stemming from matching on

covariates (even if the improvement is reduced for the SDID and the DSC opposed to the

SC and SC(B) methods).

Therefore, the superior overall performance of the methods without covariates (in Table

6) stems primarily from the lower RMSE associated with the common factor component,

especially for higher values of σ (Table 8). This conclusion, is in line with one of the

conjectures by Kaul et al. (2021) regarding the same observed phenomenon.

Finally, we observe that for the results with covariates, inclusion of half pre-treatment

periods is a preferred empirical strategy as it results in a lower total RMSE. This is also in

line with our conclusions from the empirical in-sample placebo analysis.
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Table 6: Monte Carlo Results: Total RMSE.

σ γ SC(B) all SC(B) half SC(B) one SC SC cov. half SC cov. one DSC DSC cov. half DSC cov. one SDID SDID cov. half SDID cov. one

1 0 1.0645 1.1101 1.1909 1.068 1.0907 1.1375 1.074 1.0911 1.1505 1.1596 1.1675 1.1832

1 0.25 1.1213 1.1740 1.2135 1.1201 1.1405 1.1790 1.136 1.1637 1.1960 1.2304 1.2510 1.2588

1 1 1.1553 1.1817 1.2479 1.1528 1.1641 1.2250 1.1511 1.1687 1.2134 1.2193 1.2303 1.2397

1 1.5 1.1567 1.2039 1.2976 1.1552 1.1810 1.2292 1.1523 1.1733 1.1976 1.2600 1.2769 1.2586

0.25 0 0.068 0.0696 0.0772 0.0693 0.0694 0.0716 0.0686 0.0698 0.073 0.0748 0.0756 0.0771

0.25 0.25 0.0791 0.0782 0.0963 0.0779 0.0797 0.0828 0.0770 0.0784 0.0814 0.0821 0.0833 0.0833

0.25 1 0.0894 0.0871 0.1138 0.0870 0.0875 0.0936 0.0785 0.0792 0.0870 0.0819 0.0822 0.0851

0.25 1.5 0.0931 0.0903 0.1160 0.0894 0.0902 0.0975 0.0817 0.0831 0.0902 0.0866 0.0875 0.0901

Table 7: Monte Carlo Results: RMSE component due to covariates.

σ γ SC(B) all SC(B) half SC(B) one SC SC cov. half SC cov. one DSC DSC cov. half DSC cov. one SDID SDID cov. half SDID cov. one

1 0 0.129 0.1347 0.0628 0.1407 0.1210 0.0567 0.0260 0.0228 0.0104 0.0271 0.0241 0.0106

1 0.25 0.1298 0.1381 0.0626 0.1407 0.1228 0.0567 0.0247 0.0225 0.0122 0.0246 0.0224 0.0123

1 1 0.1358 0.1357 0.0630 0.1482 0.1274 0.0536 0.0250 0.0222 0.0088 0.0247 0.0214 0.0087

1 1.5 0.1374 0.1433 0.0681 0.1493 0.1302 0.0596 0.0249 0.0226 0.0126 0.0240 0.0212 0.0120

0.25 0 0.0159 0.0179 0.0331 0.0186 0.0186 0.0171 0.0167 0.0160 0.0105 0.0081 0.0079 0.0058

0.25 0.25 0.0377 0.0448 0.0369 0.0440 0.0448 0.0428 0.0214 0.0201 0.0136 0.0084 0.0081 0.0060

0.25 1 0.0457 0.0614 0.0501 0.0530 0.0542 0.0525 0.0237 0.0201 0.0122 0.0039 0.0040 0.0034

0.25 1.5 0.0509 0.0672 0.0539 0.0577 0.0586 0.0570 0.0275 0.0230 0.0129 0.0034 0.0037 0.0032
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Table 8: Monte Carlo Results: RMSE component due to common factors.

σ γ SC(B) all SC(B) half SC(B) one SC SC cov. half SC cov. one DSC DSC cov. half DSC cov. one SDID SDID cov. half SDID cov. one

1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0.25 0.0787 0.0789 0.0854 0.0787 0.0796 0.0813 0.0398 0.0404 0.041 0.0406 0.0414 0.0419

1 1 0.2789 0.2741 0.3251 0.2786 0.2782 0.3053 0.1526 0.1553 0.1604 0.1507 0.1528 0.1605

1 1.5 0.3826 0.3761 0.4863 0.3823 0.3811 0.4398 0.2287 0.2337 0.2509 0.2169 0.2215 0.2351

0.25 0 0 0 0 0 0 0 0 0 0 0 0 0

0.25 0.25 0.0633 0.0650 0.0658 0.0657 0.0666 0.0700 0.0313 0.0314 0.0346 0.0146 0.0146 0.0163

0.25 1 0.0843 0.0911 0.0981 0.0879 0.0884 0.0961 0.0409 0.0388 0.0469 0.0095 0.009 0.0108

0.25 1.5 0.0924 0.1006 0.1057 0.0941 0.0944 0.1001 0.0437 0.0407 0.0493 0.0077 0.0072 0.0087

Table 9: Monte Carlo Results: RMSE component due to εj,t.

σ γ SC(B) all SC(B) half SC(B) one SC SC cov. half SC cov. one DSC DSC cov. half DSC cov. one SDID SDID cov. half SDID cov. one

1 0 1.0536 1.0948 1.1837 1.0553 1.0782 1.1329 1.0735 1.0908 1.1502 1.1594 1.1674 1.1831

1 0.25 1.1141 1.1665 1.2116 1.1119 1.1349 1.1753 1.1351 1.1632 1.1952 1.2292 1.2498 1.2579

1 1 1.1156 1.1470 1.2011 1.1117 1.1254 1.1741 1.1410 1.1579 1.2001 1.2103 1.2210 1.2267

1 1.5 1.0913 1.1494 1.2107 1.0898 1.1188 1.1515 1.1306 1.1508 1.1732 1.2377 1.2541 1.2365

0.25 0 0.0664 0.0683 0.0711 0.0668 0.0673 0.0702 0.0673 0.0679 0.0721 0.0734 0.0741 0.0764

0.25 0.25 0.0716 0.0716 0.0731 0.0711 0.0727 0.0742 0.0718 0.0733 0.075 0.0797 0.0809 0.0807

0.25 1 0.0721 0.0729 0.0753 0.0715 0.0728 0.0739 0.0711 0.0724 0.0758 0.0797 0.0803 0.0827

0.25 1.5 0.0758 0.0757 0.0771 0.0743 0.0755 0.0765 0.075 0.0766 0.0778 0.0853 0.0863 0.0878
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6. Concluding Remarks

In this paper, we extensively review the recently suggested extensions to the popular

Synthetic Control (SC) method. In particular, we consider the Demeaned SC (DSC) and the

Synthetic Difference-in-differences (SDID) approaches. We argue that both the DSC and

SDID methods have certain desirable finite-sample bias reduction properties. In particular,

the SDID method is targeted at minimizing the interpolation bias of the treatment effect.

In the empirical section, we re-investigate the effects of the Brexit referendum on UK

GDP. Our results (overall) indicate a stronger effect of Brexit than the one described by

Born et al. (2019). Contrary to the original study of Born et al. (2019), we do not advocate

the inclusion of covariates if one is solely interested in the GDP series. In particular, the

inclusion of covariates has a detrimental effect on the precision of counterfactual estimates

as measured via the in-sample placebo analysis. We find that our theoretical predictions in

terms of the interpolation bias translate into the superior properties of the SDID approach.

Moreover, we also show how one can easily generate a Zoo of different specifications and

methods in a fairly simple setting we consider.

Our empirical Monte Carlo study confirms the superiority of the DSC approach over

the standard SC estimator. On the other hand, we found that the relative benefits of the

SDID over the DSC are marginal at best; as for the trend specification considered in this

paper, the benefits of the SDID do not outweigh the costs of estimating an additional large

dimensional vector of time weights. Similarly to the in-sample placebo analysis, we do not

document any finite sample benefits of using covariates for estimating unit-specific weights

Finally, as neither the placebo nor the dedicated simulation-based studies are perfect

selection tools for the best methods for an empirical data at hand, we follow Ferman et al.

(2020) and Advani et al. (2019) and recommend that empirical researchers consider multiple

specification and report multiple results (as it is done in this paper).
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