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1 Introduction to Treatment Effects

Aim: evaluate effect of exposure of set of units to a program or treatment on some outcome.

Ideally: comparison of two potential outcomes for the same unit → however, we only ob-
serve one of them.

To estimate: impose assumptions / estimate counterfactuals.

2 Notation of the Rubin Causal Model

• yi(1) or yi,1 if treated

• yi(0) or yi,0 if not treated

• Causal effect: ∆i = yi(1)− yi(0)

• Observed data: yi = Diyi(1) + (1−Di)yi(0), where Di is a binary variable related to
treatment assignment.

Be aware: E (yi(1)) is not necessarily equal to E (yi | Di = 1), since the later considers poten-
tial outcomes only for treated individuals ⇒ we can have self selection into treatment.

→ in an RCT treatment is allocated randomly: Di is independent of potential outcomes and
xi, therefore the equality between the two terms above holds.

→ however, in most cases assignment is randomized only conditional on some confounder
xi : yi(1), yi(0) ⊥ Di | xi. Meaning that only after holding some characteristics constant,
assignment to treatment is random.

3 Definition of Average Treatment Effect (ATE) and As-
sumptions

ATE = ∆ = E(yi(1)− yi(0))
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where, its natural estimate would be given by:

∆̂ =
1

N

N∑
i=1

[yi(1)− yi(0)]

However, we cannot compute this value, since we do not observe both potential outcomes - we
only observe yi(1) for treated individuals and yi(0) for untreated - we impose some assumptions
such that we can estimate the ATE.

ASSUMPTION 1: SUTVA
The treatment of one individual does not affect any other individuals (no general equilibrium
effect or spillovers).

ASSUMPTION 2: Unconfounded assignment
Also known as: exogeneity (conditional on xi, treatment is exogenous), conditional indepen-
dence, or selection on observables.

Formally: yi(1), yi(0) ⊥ Di | xi

The intuition: xi might affect both potential outcomes and treatment at the same time, there-
fore both are orthogonal only after conditioning on xi.

By adjusting treatment and control groups for differences in observed covariates, we remove
biases between treatment and control units. Then, the unconfoundedness assumption is that
there is a rich set of predictors for the treatment indicator, such that adjusting for them leads
to valid estimates of the causal effect (the basis for the idea of regression analysis or propensity
score).

Note: yi(1), yi(0) ⊥ Di is stronger than the previous expression. If instead this assump-
tion is valid can calculate the ATE based only on the average of observed outcomes of treated
individuals minus the average for untreated.

ASSUMPTION 3: Conditional mean assumption (special case of Assumption 2)
The potential outcome of receiving treatment does not change whether received treatment or
not, conditioning on covariates xi.

E (yi(1) | Di = 1, xi) = E (yi(1) | Di = 0, xi) = E (yi(1) | xi)

E (yi(0) | Di = 1, xi) = E (yi(0) | Di = 0, xi) = E (yi(0) | xi)

ASSUMPTION 4: Overlap/ matching assumption
Probability of receiving treatment anywhere along the spectrum of x is strictly positive and
< 1.

0 < Pr(Di | xi) < 1
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4 Estimation of ATE with regressions

Defining the conditional averages:

µn (xi) = E (y1,i | xi)

µ0 (xi) = E (y0,i | xi)

From the lecture, given the unconfoundedness assumption, the ATE can be defined and esti-
mated as:

ATE ⇒ ∆(xi) = µ1 (xi)− µ0 (xi)

∆̂ =
1

N

N∑
i=1

[µ̂1 (xi)− µ̂0 (xi)]

Moreover, in the case of a simple linear regression, we have that:

µ1 (xi) = α1 + β′
1 (xi − µx)

µ0 (xi) = α0 + β′
0 (xi − µx)

Therefore, the ATE is:

∆(xi) = E (µ1 (xi)− µ0 (xi))

= E

α1 + β′
1 (xi− µx)︸ ︷︷ ︸
E(xi)=µx→ cancels!

−α0 − β′
0 (xi − x̄)


= α1 − α0

And, its estimated version is:
∆̂ = α̂1 − α̂0

Also, its asymptotic distribution is given by:

√
N(∆̂−∆)

d→ N
(
0, σ2

α,1 + σ2
α,0

)
where the asymptotic variance is obtained through the formula below, and given the fact that
the covariance between α̂1 and α̂0 is zero since those are the estimated intercepts of two separate
regressions - one for the treated individuals and one for the untreated.

Var(∆̂) = Var (α̂1) + Var (α̂0)− 2 · Cov (α̂1, α̂0)

Given this result for the estimate of the ATE our aim now is to show why this is different
from the estimates of an RCT - where only the differences of the averages of the treated
and untreated outcomes are taken into account - and how it takes into account a correction for
the differences in inputs as mentioned in slides.

From the regression results we would have that:

α̂1 = ȳ1 − β̂′
1 (x̄1 − x̄)

α̂0 = ȳ0 − β̂′
0 (x̄0 − x̄)

Moreover, by rewriting x̄ = NT x̄1+NC x̄0

NT+NC
, where NT is the number of treated individuals and NC

is the number of untreated, and substituting in the above expressions, and further substituting
the above expressions in the estimated ATE, we have:
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∆̂ = ȳ1 − ȳ0 − β̂′
1

(
x̄1 −

NTx1 +NCx0

NT +NC

)
+ β̂0

′
(
x0 −

NTx1 +NCx0

NT +NC

)
= y1 − y0 − β̂1

′
(
NCx1 −NCx0

NT +NC

)
+ β̂0

′
(
NTx0 −NTx1

NT +NC

)
= y1 − y0 −

NC

NT +NC
β̂′
1 (x̄1 − x̄0)−

NT

NT +NC
β̂0

′
(x1 − x̄0)

where y1 and x1 are averages over the treated individuals and y0 and x0 are averages over the
untreated individuals. The first difference in the last line of the previous expression, y1 − y0
would be the estimated ATE if we had an RCT and complete randomization of treatment,
therefore, the remaining terms in this line are the correction for differences in inputs between
treated and untreated groups.

However, as mentioned in the lecture slides, the study conducted by Lalonde showed that
those estimates are very sensitive to the specification of the regression model, and even when
considering several different specifications, the results can still be biased. An identified problem
that remains in this approach is that depending on the values of the covariates the probability
of receiving treatment could vary a lot, therefore there is too much imbalance in the values of
the covariates between the treated and untreated groups.

5 Derivations of doubly-robust estimator

Given the problem of imbalance mentioned in the last paragraph, one idea is to take into account
how similar individuals are through the propensity score defined by p (xi) = Pr (Di = 1 | xi).
For instance, one way to take into account for the propensity score is by using the inverse
propensity weighting estimator:

∆ipw = E
[
Diyi
p (xi)

− (1− pi) yi
(1− p (xi))

]
that could be estimated as:

∆̂ipw =
1

N

N∑
i=1

[
Diyi
p̂(xi)

− (1−Di)yi
1− p̂(xi)

]
where p̂(xi) is the estimated propensity score, that can be estimated, for instance, with a non-
parametric model.

⇒ the IPW is great when the number of observations is large, but in small samples, we may
need a parametric model that may be misspecified.
⇒ the idea of the doubly-robust estimator is to combine IPW and the regression framework
from before, such that the estimate is unbiased even when only the propensity score, or only
the regression model is correctly specified (we do not need both to be correctly specified).

Our aim in this section is to show the definition of the doubly-robust estima-
tor and to derive the later property that we described above.

To obtain the estimator, one should run the following steps:
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1) Estimate the parametric model for the propensity score → obtaining p̂(xi)
2) Estimate the regression coefficients weighting the observations by the propensity score (es-
timated):

min
αk,βk

∑
i:Di=k

yi − αk − β′
k (xi − x̄)

p̂ (xi)

Then, the estimated ATE is given by ∆̂dobrob = α̂1 − α̂0.

To derive the property that only the propensity score or the regression model need to be
correctly specified, we first rewrite the expression for the ATE using the doubly-robust specifi-
cation as:

∆dobrob = E
[
Diyi
p (xi)

+

(
1− Di

p (xi)

)
µ1(x)−

(
yi (1−Di)

1− p (xi)
+

(
1− (1−Di)

1− p (xi)

)
µ0(x)

)]
This expression is equivalent to what we would obtain considering the two steps mentioned
above. We can further rewrite:

Diyi
p (xi)

= yi +

(
Di − p (xi)

p (xi)

)
yi

And substituting it in the expression for ∆dobrob:

∆dobrob =E
[
yi(1) +

Di − p (xi)

p (xi)
(yi(1)− µ1(x))−

(
yi(0)−

Di − p (xi)

1− p (xi)
(yi(0)− µ0(x))

)]
=E (yi(1)− yi(0)) + E

[
Di − p (xi)

p (xi)
[yi(1)− µ1 (xi)] +

Di − p (xi)

1− p (xi)
[yi(0)− µ0 (xi)]

]
=ATE+ E

[
Di − p (xi)

p (xi)
[yi(1)− µ1 (xi)] +

Di − p (xi)

1− p (xi)
[yi(0)− µ0 (xi)]

]
Therefore, to show that the expression for ∆dobrob is unbiased for the ATE, we need to show
that the second term above goes to zero. We consider then 2 scenarios, where in each either
the propensity score or the regression model is correctly specified.

Scenario 1: propensity score is correctly specified but regression model is not
Meaning p(xi) = E(Di | xi) but µj(xi) ̸= E(yi | Di = j, xi). Then, we can rewrite:

∆dobrob =ATE+ E
[
E
[
Di − p(xi)

p(xi)
[yi(1)− µ1 (xi)] | yi(1), xi

]
+ E

[
Di − p (xi)

1− p (xi)
[yi(0)− µ0 (xi)] | yi(0), xi

]]
=ATE+ E

[
E [Di | yi(1), xi]− p (xi)

p (xi)
[yi(1)− µ1 (xi)] +

E [Di | yi(0), xi]− p (xi)

1− p (xi)
[yi(0)− µ0 (xi)]

]
therefore, if the propensity score is estimated correctly, and E [Di | yi(0), xi] = p(xi) and
E [Di | yi(1), xi] = p(xi), then the last term in the last line is equal to zero and ∆dobrob is
unbiased.

Scenario 2: regression model is correctly specified but propensity score is not
Meaning µj(xi) = E(yi | Di = j, xi) but p(xi) ̸= E(Di | xi) . Then, we can rewrite:

∆dobrob = ATE+ E
[
E
[
Di − p (xi)

p (xi)
(yi(1)− µ1 (xi)) | Di = 1, xi

]
+ E

[
Di − p(x)

1− p (xi)
(yi(0)− µ0 (xi)) | Di = 0, xi

]]
= ATE+ E

[
1− p (xi)

p (xi)
[E (yi(1) | Di = 1, xi)− µ1(x)] +

(
−p (xi)

1− p (xi)

)
[(E (yi(0) | Di = 0, xi)− µ0(x)]]
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therefore, if the regression model is specified correctly, and E (yi(1) | Di = 1, xi) = µ1(x) and
E (yi(0) | Di = 0, xi) = µ0(x), then the last term in the last line is equal to zero and ∆dobrob is
unbiased.
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1 Treatment Effects: When the unconfoundedness assump-
tion does not hold

In the previous TA, when we talked about propensity scores, we assumed that treatment par-
ticipation was not randomly assigned, But depended on a vector of observable variables x . For
example, treatment being targeted to some subpopulation defined by some observable charac-
teristics , such as age, etc.

In this scenario, the assumption of conditional independence, or unconfoundedness was neces-
sary, such that:

yi(0), yi(1) ⊥ Di | xi

However, there are cases where the treatment assignment Di is dependent on unobserved char-
acteristics that are also affecting the potential outcomes such that the assumption above does
not hold.

Without the unconfoundedness assumption, there is no general approach to estimate treat-
ment effects. When this self-selection problem arises, one can then estimate treatment effects
using for instance, the LATE (IV) estimator, or the difference-in-differences estimator, among
others. More specifically:

- IV (LATE): relies on the presence of instruments.
- Difference-in-differences: relies on the presence of panel data and the common trends assump-
tion.

1.1 The difference-in-differences estimator

When one has data on treated and control groups both before and after the treatment period,
we can use the difference-in-differences estimator, subject to certain assumptions.

Simplest setting: two groups (treated and non-treated/control) and two time periods, before
and after treatment. Outcomes are observed for units that are in one of two groups in one of two
time periods. Only units in one of the two groups in the second period are exposed to treatment.

We could think of comparing the average of outcomes only for this group in the two differ-
ent time periods to obtain the estimated ATE. However, a part of the difference can be due to
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trends in the (potential) outcomes, and not the treatment itself, therefore, we need to correct
for that.

Model: individual i, i = 1...N , belongs to a group Gi ∈ {0, 1}, where group 1 is the treatment
group and outcomes are observed in periods Ti ∈ {0, 1}.
In the standard DiD model we can write the outcome for individual i in the absence of reatmint,
Y (0) :

yi(0) = α+ βTi + γGi + εi

Where: β is time component common to both groups, γ is a group-specific and time-invariant
component, εi are unobserved characteristics. It is assumed that εi ⊥ (Gi, Ti).

We can also write the model in terms of a time-invariant individual specific fixed effect, poten-
tially correlated with Gi:

yi(0) = α+ βTi + γi + εi

The equation for the outcome without treatment is then combined with an equation in the
outcome given the treatment: yi(1) = yi(0) + τdid.

The standard DiD estimand is then:

τdid = E [yi(1)]− E [yi(0)]

= (E [yi|Gi = 1, Ti = 1]− E [yi|Gi = 1, Ti = 0])− (E [yi|Gi = 0, Ti = 1]− E [yi|Gi = 0, Ti = 0])

The first term of the expression above, (E [yi|Gi = 1, Ti = 1]− E [yi|Gi = 1, Ti = 0]), measures
the difference between outcomes in the treated group before and after the treatment, there-
fore, this measure removes the fixed-effects given by the group Gi = 1, however, it is still
biased due to the possible effect of time trends in outcomes. On the other hand, taking into
account simply the quantity E [yi|Gi = 1, Ti = 1]−E [yi|Gi = 0, Ti = 1], which is the difference
between the outcomes of treated and control groups after treatment is also biased, even if
not suffering from the possible effect of time trends, due to the possible intrinsic difference in
potential outcomes between the two groups both in the presence or in the absence of treatment.

The differences of differences then subtracts the average gain over time in the outcome of the
control group (which, if the common trends assumption is satisfied measures the time trends
for both groups) from the average gain over time in the outcome of the treated group (which
captures both the treatment effect and the time trend), removing both biases mentioned before.

We can estimate the parameter τdid using least squares on the observed outcome:

Yi = α+ β1 · Ti + γi + τdid ·Di + εi

where the treatment indicator Di is equal to the interaction of group and time indicators :
Di = Ti ·Gi

2 When should you adjust standard errors for clustering?

Based on the paper Abadie et al. (2017).
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2.1 Some fallacies on the topic

• ”The clustering problem is caused by the presence of a common unobserved random
shock at the group level that will lead to correlation between all observations within each
group”.
→ this motivation makes it difficult to justify clustering by some partitions of the popu-
lation but not others (age, state). Also why would cluster when including FE?

• ”The consensus is to be conservative and avoid bias and use bigger and more aggregate
clusters”.
→ there is actually harm in clustering at too aggregate level.

• ”If there is difference between clustered standard errors and others, then use clustered”.

2.2 Clustering as a design problem

Sampling design: sampling follows a 2-stage process, where in the first stage a subset of
clusters is sampled and in the second stage units are sampled randomly from sampled clusters.

Experimental design: clusters of units rather than units are assigned to treatment.

In previous studies, clustering was based on experimental design, now this paper focuses on the
sampling design. Some conclusions in this change of perspective are then reached:

• Correlations between residuals within clusters are not necessary or sufficient for cluster
adjustment to matter. Clustering can matter also even when both residuals and regressors
are uncorrelated within clusters.

• Data is only partially informative about whether should cluster. It matters:

– How units in the sample were selected and if all clusters were sampled.

– If units were assigned to treatment clustered.

• If sampling process and assignment mechanism are both not clustered, then one should
not adjust standard errors, even when adjustment changes standard errors.

2.3 Example and misconceptions

As mentioned earlier, before we had a model-based approach and not a design-based approach.
The model considered before takes into account outcomes Yi, with covariates Wi ∈ {0, 1}, and
each unit i belongs to a cluster Ci ∈ {1, ..., C}. It is based on a linear model:

Yi = α+ τWi + εi = β′Xi + εi

where εi is stochastic, and Xi, Ci are non-stochastic. Moreover, repeated sampling relies on
only redrawing εi.

It is imposed that: E[ε | X,C] = 0 and E
[
εε⊤ | X,C

]
= Ω. Which leads to the variance:

V(β̂) =
(
X⊤X

)−1 (
X⊤ΩX

) (
X⊤X

)−1
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without clustering Ω is diagonal. We can also assume homoskedasticity, such that σ2 = Ωii =
V (εi), leading to:

VOLS = σ2
(
X⊤X

)−1

Or, we can often allow for general heteroskedasticity:

VEHW(β̂) = (X⊤X)−1

(
N∑
i=1

ΩiiXiX
⊤
i

)(
X⊤X

)−1

To incorporate clusters, Kloek (1981) use the homoskedastic structure:

Ωij =

 0 if Ci ̸= Cj

ρσ2 if Ci = Cj , i ̸= j
σ2 if i = j

Then, we obtain the variance:

VKLOEK(τ̂) = VOLS ×
(
1 + ρερW

N

C

)
where ρε is the within cluster correlation of errors, and ρW is the within cluster correlation of
regressors.

Liang and Zeger: further relax this expression such that Ωij is unrestricted for pairs (i, j)
with Ci = Cj :

VLZ(β̂) =
(
X⊤X

)−1

(
C∑

c=1

X⊤
c ΩcXc

)(
X⊤X

)−1

2.4 Intuition of main results of the paper

The expressions above for the variance estimators have been widely used, and from the equation
for VKLOEK(τ̂) it is clear that clustering was considered for cases where there were correlations
within clusters for errors and regressors. Therefore, according to this, clustered standard errors
should not differ when we have a randomized experiment with random treatment assignment.

The main idea for this section in the paper is to disprove this statement with some simu-
lation results. It was considered N ≈ 100000, and C = 100 clusters with approximately 1000
units each, having therefore only modest variation in cluster sizes.

The model to be considered was:
Yi = α+ τWi + εi

where the within cluster correlations are approximately zero. Therefore, the adjustment in the
expression for VKLOEK(τ̂), given by the term ρερW

N
C would be close to zero, indicating that

there should be no need for clustering.

However, in the simulations, it was found that V̂EHW ̸= V̂LZ. Then, the authors claimed that
instead, what should matter for the clustered standard errors to differs is whether, instead,
the correlation between residuals and regressors ρε̂W to be different than zero. Moreover, they
reinforced the idea that even if the clustered standard errors differ, it does not necessarily mean
that one should cluster standard errors.
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Then, the authors introduce the sampling design, taking into account in the model how this
sample was obtained. They consider a population of 10000000 units with C = 100 clusters, from
which the N ≈ 100000 sampled units were sampled randomly across all clusters. Moreover, the
treatment assignment variable, Wi ∈ {0, 1} assumes each value with independent probability

p = 1
2 . Based on the obtained samples, they estimate the variances V̂EHW and V̂LZ. At the end,

they show that with this sampling design, the estimated variance V̂EHW leads to an appropriate
coverage rate, while the estimated variance V̂LZ does not, once it is a higher estimate, which
indicates that even if the clustered standard errors differ, it does not necessarily mean that
one should cluster the standard errors. This conclusion also follows from the fact that the VLZ

is based on the assumption that there are clusters in the population beyond the 100 clusters
which units were drawn from, which is not the case in this design.

2.5 Formal results

The aim of this section is to derive the exact variance to an approximation of the least squares
estimators, that takes into account the sampling variation and the variation from the assignment
mechanism. Once this expression is obtained, it is then compared to the previously proposed
variance estimators.

Definitions

It is considered a sequence of populations n, which for each population there is a number
of units, for instance, for the nth population we have Mn units i = 1, ..,Mn, which is strictly
increasing in n.

Each population is also partitioned into Cn clusters, which is weakly increasing in n. It is
also defined:

- Cin ∈ {1, ..., Cn}, which is the stratum to which unit i belongs.
- Cinc = ⊮Cin=c, which is an indicator function for whether unit i belongs to cluster C = c.
- Mcn =

∑n
i=1 Cinc, which is the number of units in each cluster.

We are interested in the population average of treatment effect:

τn =
1

Mn

Mn∑
i=1

(Yin(1)− Yin(0)) = Ȳn(1)− Ȳn(0)

where each average in the last term is given by Ȳn(W ) = 1
Mn

∑Mn

in Yin(W ). We can also define
treatment-specific residuals:

εin(W ) = Yin(W )− 1

Mn

Mn∑
j=1

Yjn(W )

Then Yin(W ) and εin(W ) are not stochastic.

Sampling and Assignment Mechanisms

We do not observe both Yin (0) and Yin (1), which one is observed is then depending on the
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value of the stochastic treatment Win ∈ {0, 1}. The realized outcomes and residuals are given
by:

Yin = Yin (Win)

εin = εin (Win)

Moreover, we observe a subset of the Mn units in the population, that is indicated by the
stochastic variable Rin, which is equal to 1 if observed and 0 otherwise. Therefore, if Rin = 1,
we observe the triple (Yin,Win, Cin).

In a nutshell, what is observed depends on the stochastic variables Win and Rin, and therefore,
given an estimand of τn, the standard errors need to capture both variations.

Sampling process determines Rin and is independent of potential outcomes and assignment.
Steps:

1. Clusters are sampled with probability PCn

2. Sample units from those with probability PUn

Thus, if PCn
≈ 0, then it is the case covered by the LZ estimator.

Assignment process determines Win. Steps:

1. For a cluster c in population n there is an assignment probability qcn ∈ [0, 1] that is drawn
from a distribution f(·) with mean µn and variance σ2

n (note: if the variance is equal to 0, then
we have random assignment, if the variance is positive then there is correlated assignment in
clusters).
2. Each unit in c is assigned to treatment independently with a cluster-specific probability qcn.

Therefore, as the random part of the estimator comes from the variables Rin and Win, then
the mean and the variance of it depend on the first and second cross-moments of those variables:

Variable Expected Value Variance Within Cluster Covariance
Rin PCnPUn PCnPUn (1− PCnPUn) PCn (1− PCn)P

2
Un

Win 1/2 1/4 σ2
n

Rin Win PCnPUn/2 PCnPUn (2− PCnPUn) /4 PCnP
2
Un (1− PCn) /4 + σ2

nPCnP
2
Un

Note that the within cluster covariance of Rin is zero if PCn = 0 or PCn = 10, which in-
dicates that either all clusters are sampled or only a vanishing fraction. The within cluster
covariance of Win is zero if the assignment probability is constant across clusters (σ2

n = 0).

The estimator

We are interested in the least squares estimator for τ in the regression

Yin = α+ τWin + εin.

Define the averages

R̄n = 1
Mn

∑Mn

i=1 Rin, W̄n = 1
Nn

∑Mn

i=1 RinWin,

Ȳn = 1
Nn

∑Mn

i=1 RinYin.
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Note that except for R̄n these averages are defined over the units in the sample, not the units
in the population. Now we can write the least squares estimator τ̂ as

τ̂ =

∑n
i=1 Rin

(
Win − W̄n

)
Yin∑n

i=1 Rin

(
Win − W̄n

)2
Note further that the estimator τ̂ depends on the random variables Rin, Win and Yin.

The main formal result of the paper is then to compute the exact variance of this expres-
sion for the estimator and then to compare it to the previous proposed estimated variances, as
shown in the following proposition:

Proposition 1. Suppose Assumptions 1-5 hold. Then (i), the exact variance of ηn is

V (ηn) =
1

Mn

Mn∑
i=1

{
2
(
εin(1)

2 + εin(0)
2
)
− PUn (εin(1)− εin(0))

2
+ 4PUnσ

2
n (εin(1)− εin(0))

2
}

+
PUn

Mn

Cn∑
c=1

M2
cn

{
(1− PCn) (ε̄cn(1)− ε̄cn(0))

2
+ 4σ2

n (ε̄cn(1) + ε̄cn(0))
2
}

(ii) the difference between the limit of the normalized LZ variance estimator and the correct
variance is

VLZ − V (ηn) =
PCnPUn

Mn

Cn∑
c=1

M2
cn (ε̄cn(1)− ε̄cn(0))

2 ≥ 0,

and (iii), the difference between the limit of the normalized LZ and EHW variance estimators
is

VLZ − VEHW = −2PUn

Mn

Mn∑
i=1

{
(εin(1)− εin(0))

2
+ 4σ2 (εin(1) + εin(0))

2
}

+
PUn

Mn

Cn∑
c=1

M2
cn

{
(ε̄cn(1)− ε̄cn(0))

2
+ 4σ2 (ε̄cn(1) + ε̄cn(0))

2
}
.

Main intuitions of Proposition 1

Part (i): The first sum is approximately the EHW variance, while the second sum then re-
flects the effects of the the sampling and assignment mechanisms of clusters. The second sum
disappears if: PCn

= 1, in which case we have a non clustered sample, and σ2
n = 0, meaning

that we have no clustering in treatment assignment. −→ Indicates that one should cluster only
when we have a clustered sample (not all clusters are sampled) and there is clustering in the
treatment assignment (some clusters are more likely to receive treatment than others).

Part (ii): There is a difference between the LZ variance and the exact variance if PCn
is

not close to zero. Therefore, the LZ variance captures the clustered assignment to treatment,
but not the sampling assignment, unless it is the case that only a small proportion of clusters
are sampled.−→ Indicates that the LZ variance estimator only correctly takes into account clus-
tering if a small proportion of clusters are sampled.

7
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Part (iii): The difference between the EHW and LZ variances remain if Mcn is constant and
large relative to C, which is when the second term dominates.

3 References

Abadie, A., Athey, S., Imbens, G. W., Wooldridge, J. (2017). When should you adjust standard
errors for clustering? (No. w24003). National Bureau of Economic Research.
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1 Recap of IV/2SLS Estimators

1.1 IV Estimator

Consider the following model:

Y = Xβ + u

with k regressors X and k instruments Z.
Consider also the following two assumptions:

- Instrument validity: Cov(Z, u) = E(Z ′u) = 0, provided that E(u) = 0
- Relevance: E (Z ′X) is non singular or: Cov(Z,X) ̸= 0

Then, from validity, E(zu) = 0, it follows that:

E(Z ′Y ) = E(Z ′X)β

β = (E(Z ′X))−1E(Z ′Y )

which is a valid expression provided that E(Z ′X) is non-singular (relevance condition). An
estimator for this quantity is:

β̂IV = (Z ′X)−1(Z ′Y )

which is the known IV estimator. However, the number of instruments r may differ from k,
leading to the 2SLS estimator in the case that r > k. We can consider 3 cases:

• r < k: E(Z ′Y ) = E(Z ′X)β has no solution

• r = k: β is just-identified

• r > k: β is over-identified, that is, there are more equations than unknowns. The idea of
the 2SLS in this case is to use linear combinations of instruments.

1.2 2SLS estimator

Consider now the following model:

Y = Xβ + u

1
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X = Π′Z + ν

where X is a matrix. Moreover, the following assumptions hold:

E[Z ′u] = 0 E[Z ′ν] = 0

Then, one can estimate β by 2SLS with the following steps:

1. Estimate Π by OLS: Π̂ = (Z ′Z)−1Z ′Y
2. Define X̂ = ZΠ̂ and estimate the OLS for the model:

Y = X̂β + ε

leading to:
β̂2SLS = (X̂ ′X̂)−1X̂ ′Y

When working out the expression for the β̂2SLS , we can see that it resembles the previous
expression for the IV estimator, β̂IV where instead of taking into account Z as instruments,
we take into account X̂ = ZΠ̂ as instruments, which essentially are a linear combination of the
original instruments. To do so, first, remember that:

X̂ = ZΠ̂ = Z(Z ′Z)−1Z ′X and Z(Z ′Z)−1Z ′ = PZ

where PZ is a projection matrix. Then:

β̂2SLS =
(
X̂ ′X̂

)−1

X̂ ′Y

=
[
X ′Z (Z ′Z)

−1
Z ′X

]−1

X ′Z (Z ′Z)
−1

Z ′Y

= (X ′PZX)
−1

X ′PZY

=
(
X̂ ′X

)−1

X̂ ′Y

Note that the expression in the last line is very similar to that of the βIV , what differs is that
instead of having directly the instruments Z, we have the fitted values X̂, which are essentially
a linear combination of the instruments.

2 Testing for instrument validity - OIR test (exogeneity)

For more details on this section, please refer to sections 6.3.8 and 8.4.4 in Cameron & Trivedi.

Consistency of the IV/2SLS estimators requires that E(Z ′u) = 0, that is, that the instruments
Z are exogenous. The idea of the OIR/Sargan test is to test for this condition.

• In case of just identification (r = k) this condition cannot be tested, as Z ′û = 0 was
already imposed for the estimation.

• In case of overidentification (r > k) (case where we have more equations from FOC then
unknown parameters) we can use k instruments given by X̂ = ZΠ̂ for estimation and test
the validity of the remaining r − k instruments.

2
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• The Sargan test then rejects H0 : E[Z ′u] = 0 when:

OIR =
û′Z (Z ′Z)

−1
Z ′û

s2
=

û′PZ û

s2

exceeds the χ2(r − k) critical value. The idea is that when the exogeneity condition is
met, the projection of û spanned into the space of Z should be 0, as they should be
orthogonal.

The aim of this section is then to explain why the test has this functional form,
and why we have that it follows this distribution with (r-k) degrees of freedom.

Consider the model:

Y = Xβ + u X is N × k
ui ∼ N

(
0, σ2

)
Further assume that X is endogenous and that we have a set of instruments Z that is N × r,
with r > k, that is, more instruments than endogenous regressors.

We can partition the set of instruments such that:

Z = [Z1 Z2]

with Z1 being (N × k) and Z2 being (N × (r − k)). Then, we can also rewrite the first stage
model as:

X = Z1Π1 + Z2Π2 + v

= ZΠ+ v

where Π1 is a matrix of parameters (k × k) and Π2 is (r − k × k).

We can then plug-in the model for X in the expression for Y :

Y = Xβ + u

= (Z1Π1 + Z2Π2 + v)β + u

= Z1Π1β + Z2Π2β + ε

where ε = u + vβ is a new defined error term. The validity of instruments is still given by
E(u|Z) = 0, or E(Z ′u) = 0.

Criterion function

The form of the OIR test originates from the criterion function of the 2SLS estimator (from
the GMM literature), which ideally you want it to be as close to zero as possible (reflecting
the moment condition given by the exclusion restriction of instruments). Therefore, we will
first define which is this criterion function, and then show that for the just-identified case it
will always be equal to zero, while in the over-identified case it is not necessarily. The criterion
function is defined as:

Q(β) = (Z ′(Y −Xβ))
′
(Z ′Z)

−1
Z ′(Y −Xβ)

3
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This expression comes from the moment E(Z ′u) = 0, we are minimizing the square of this
expression weighted by (Z ′Z)−1. This weighting matrix is not optimal in the sense that it does
not lead to the smallest variance for the GMM estimator, but it is the weight used to obtain
the 2SLS estimator in a GMM framework.

We can further rewrite the criterion function:

Q(β) = (Y −Xβ)′ Z (Z ′Z)
−1

Z ′︸ ︷︷ ︸
PZ

(Y −Xβ)

= (Y −Xβ)′PZ(Y −Xβ)

Now, we separate into two cases, the just-identified and the over-identified, and we evaluate
the criterion function at the IV and the 2SLS estimators, respectively.

Just-identified case: it is equivalent to taking into account only Z1 as instruments. The
estimator is given by β̂IV = (Z ′

1X)−1Z ′
1Y . Evaluating the criterion function at this estimator:

Q
(
β̂IV

)
=

(
Y −X (Z ′

1X)
−1

Z ′
1Y

)′
PZ1

(
Y −X (Z ′

1X)
−1

Z ′
1Y

)
=

(
PZ1

Y − PZ1
X (Z ′

1X)
−1

Z ′
1Y

)′ (
PZ1

Y − PZ1
X (Z ′

1X)
−1

Z ′
1Y

)
where in the second line we used the fact that PZ1 = P ′

Z1
PZ1 . Considering then only the first

part of the term in the second line:

PZ1Y − PZ1X (Z ′
1X)

−1
Z ′
1Y = PZ1Y − Z1 (Z

′
1Z1)

−1
Z1X (Z ′

1X)
−1

Z ′
1Y

= PZ1Y − Z1 (Z
′
1Z1)

−1
Z ′
1Y

= PZ1Y − PZ1Y = 0

Therefore, evaluating it at the estimator βIV will always lead 0.

Over-identified case: we now take into account the entire set of Z instruments. The es-
timator is given by β̂GIV = (X ′PZX)−1X ′PZY . Evaluation the criterion function at this
estimator:

Q
(
β̂GIV

)
=

(
Y −X (X ′PZX)

−1
X ′PZY

)′
PZ

(
Y −X (X ′PZX)

−1
X ′PZY

)
=

(
PZY − PZX (X ′PZX)

−1
X ′PZY

)′ (
PZY − PZX (X ′PZX)

−1
X ′PZY

)
= (PZY − PPZXY )′(PZY − PPZXY )

= Y ′(PZ − PPZX)′(PZ − PPZX)Y

= Y ′(PZ − PPZX)Y

where in the second line we used the fact that PZ = P ′
ZPZ , in the third line, we used the fact

that PZX (X ′PZX)
−1

X ′PZ has the form of a projection matrix that we denote by PPZX , and
finally in the last line we use the fact that as both PZ and PPZX are projection matrices, the
term (PZ − PPZX) is symmetric and idempotent, so the square is itself. We can further open
up the expression for Y to obtain:

4
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Q
(
β̂GIV

)
= (Xβ + u)′(PZ − PPZX)(Xβ + u)

We can further simplify this expression, given that:

(Xβ)′(PZ − PPZX) = β′(X ′PZ −X ′PPZX)

= β′(X ′PZ −X ′PZX (X ′PZX)
−1

X ′PZ)

= β′(X ′PZ −X ′PZ) = 0

Therefore:

Q
(
β̂GIV

)
= u′(PZ − PPZX)u

Our goal is to compare this expression to the numerator of the OIR test, namely, û′Z(Z ′Z)−1Z ′û,
given that the denominator is only a normalization to obtain the distribution of the test. It
is clear that the two expressions differ for now in two aspects: the test considers the residuals
instead of the error term, and the test does not contain the term PPZX . However, intuitively it
is clear that u′PPZX = 0, once those terms should be orthogonal for the OLS estimation in the
second step: this terms reflect the projection of the errors into the space spanned by the part of
X that is explained by Z, meaning X̂, and by OLS assumptions the errors and X̂ should be or-
thogonal. To formally show the equivalence between the expressions, we take 4 additional steps.

Step 1. Note that (PZ − PPZX) = PZ(I − PPZX) This follows since PZPPZX = PPZX :

PZPPZX = Z (Z ′Z)
−1

Z ′PZX (X ′P ′
ZPZX)

−1
X ′PZ

= Z (Z ′Z)
−1

Z ′Z (Z ′Z)
−1

Z ′X (X ′P ′
ZPZX)

−1
X ′PZ

= PZX (X ′P ′
ZPZX)

−1
X ′PZ = PPZX

Step 2. We also have that as PZ is a projection matrix and (I − PPZX) is a residual maker
matrix, that we can denote by MPZX :

PZ(I − PPZX) = (I − PPZX)′PZPZ(I − PPZX)

Then:

Q
(
β̂GIV

)
= u′(I − PPZX)′PZPZ(I − PPZX)u

= u′MPZXPZMPZXu

Step 3. We also know that ZΠ̂ = Z(Z ′Z)−1Z ′X = PZX, and therefore MPZX = MZΠ̂.
Therefore:

Q
(
β̂GIV

)
= u′MZΠ̂PZMZΠ̂u

Substituting u = Y −Xβ:

Q
(
β̂GIV

)
= (Y −Xβ)′MZΠ̂PZMZΠ̂(Y −Xβ)

5
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Step 4: As we know that û = MZΠ̂Y , to complete the proof it suffices to show that (Xβ)′MZΠ̂PZ =
0:

(Xβ)′MZΠ̂PZ = (Xβ)′MPZXPZ

= (Xβ)′(I − PZX(X ′P ′
ZPZX)−1X ′PZ)PZ

= (Xβ)′PZ − β′X ′PZX(X ′PZX)−1X ′PZPZ

= (Xβ)′PZ − β′X ′PZ = 0

Therefore, the proof is complete.

Distribution of the OIR test

In general, for a random variable ε ∼ N(0, 1), we have that:

ε′PXε ∼ χ2(k)

where k is the rank of the projection matrix PX :

k = rank(PX) = tr(PX) = tr(X(X ′X)−1X ′)

= tr((X ′X)−1X ′X)

= tr(Ik) = k

where in the second line we used that tr(AB) = tr(BA). Now we can apply the above to:

1

s2
u′(PZ − PPZX)u ∼ χ2(q)

where we scale for 1
s2 such that 1

su ∼ N(0, 1). We only need to find now that q = r − k:

q = rank(PZ − PPZX)

= tr(PZ)− tr(PPZX) = tr(Ir)− tr(Ik) = r − k

3 Handy projection matrix properties

PX = X (X ′X)
−1

X

PXX = X

P ′
XPX = PX

P ′
X = PX

MX = I − PX

PX +MX = I

PXMX = 0

MX′ = MX

M ′
XMX = MX

MXX = 0

6
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1 Method of Moments and Generalized Method of Mo-
ments

Method of Moments: number of moment conditions is equal to the number of unknown
parameters to be estimated.
Generalized Method of Moments (GMM): number of moment conditions is bigger than
the number of estimated parameters.

1.1 Two stage estimation in nonlinear models

We start with a brief review of GMM. We have seen in the lecture that the GMM estimation
of models based on non-linear moment conditions such as,

E[r(yi, xi, β)|zi] = 0

that can be given through some economic theory that implies a conditional moment, leads to,
according to the notation of the lecture slides,

hi(β) = zir(yi, xi, β)

which, in turn will imply in an unconditional moment. This follows since:

E[hi(β)] = E[zir(yi, xi, β)] = E [E[zir(yi, xi, β)|zi]] = E [ziE[r(yi, xi, β)|zi]] = 0

We denote that hi(β) is a vector of size r, and, therefore, r denotes the number of moment
conditions, while β has dimension q. If r = q, one can simply obtain the estimates of the
parameters by taking the sample analogue of the expression E[hi(β)] = 0. However, when
r > q, one instead look at the set of parameters that minimizes the weighted euclidean length
of the vector defined by gN (β) := 1

N

∑N
i=1 hi(β), the sample analogue of the moment condition.

Therefore, it minimizes the following criteria function:

QN (β) = gN (β)′WNgN (β)

Moreover, denoting the following vectors of derivatives:

GN (β) =
1

N

N∑
i=1

∂hi(β)

∂β′ =
1

N

N∑
i=1

zidi(β)
′ =

1

N
Z ′D (β)

1
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where D(β) has rows di(β)
′ = ∂r(yi,xi,β)

∂β′ . Therefore, the FOC of QN (β) is given by:

D(β)′ZWNZ ′r(β) = 0

and the general expression for the asymptotic variance of the resulting estimator applies with
Ĝ = N−1Z ′D(β̂).

However, while the GMM method translates easily to a 2SLS approach in linear
models, it does not generalize straightforwardly to non-linear models. That is, taking
the OLS fitted values x̂i = z′iΠ̂ from a first stage estimation and minimizing 1

N

∑N
i=1 r(yi, x̂i, β)

2

is not equivalent to GMM and leads to inconsistent estimators.

To illustrate this problem, let’s consider the following model, considering the variables to be
scalars, and where the errors may or may not be correlated:

yi = βx2
i + ui

xi = πzi + vi

The 2SLS procedure would suggest then to regress first x on z and obtain the fitted values x̂,
and then regress y on x̂2. However, this procedure leads to wrong standard errors in the second
stage and it breaks down if you have a nonlinear model, that is, if we take y = g(x̂, β) + u,
with g(·) a nonlinear function either in the parameters or in the variables, then it will lead to
inconsistent estimates of β.

Note that in the case of IV (just identified), this is not particularly a problem, since
one does not rely on the 2SLS procedure, and the IV estimator can simply be given by:

β̂IV = (z′x2)−1z′y =

(
N∑
i=1

zix
2
i

)−1 N∑
i=1

ziyi

which is implemented by a regular IV regression of y on x2, with instruments z. Also, the IV
estimator can be shown to be equal to the nonlinear IV defined by the sample analogue moment
conditions:

1

N

N∑
i=1

ziui = 0

In the case of two stage least squares, in the second stage we would regress y on (x̂)2, that
is, the square of the fitted values, delivering:

β̂2SLS =

(
N∑
i=1

(x̂i)
2(x̂i)

2

)−1( N∑
i=1

(x̂i)
2yi

)
However, this is an inconsistent estimate. To prove that, we start by writing:

yi = βxi
2 + ui

= β(x̂i)
2 + wi

2
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where wi is a new error term defined by wi = β(x2
i − (x̂i)

2) + ui. Taking into account, from
the model, that xi = πzi + vi, we can further open up the expression (x2

i − (x̂i)
2):

x2
i − (x̂i)

2 = (πzi + vi)
2 − (π̂zi)

2

= π2zi
2 + 2πzivi + v2i − π̂2zi

2

With some abuse of notation, as long as π̂ is a consistent estimator for π, the first and the last
terms of the latter expression cancels out:

x2
i − (x̂i)

2 = 2πzivi + v2i

Given this result, it is easy to see that the regressor (x̂i)
2 is correlated with the error, leading

to inconsistency of the estimates:

(x̂i)
2
(
xi

2 − (x̂i)
2
)
=
(
x̂i)

2
(
2πzivi + vi

2
)
= π̂2zi

2
(
2πzivi + vi

2
)

Taking the probability limit of this term:

plim
1

N

N∑
i=1

(x̂i)
2
(
xi

2 − (x̂i)
2
)
= plim

1

N

N∑
i=1

(
2π3z3i vi + π2z2i v

2
i

)
= plim

1

N

N∑
i=1

(
π2z2i v

2
i

)
̸= 0

where, to reach to the final expression we used the fact that by assumption zi and vi are inde-
pendent, and that vi has expected value zero. Moreover, even if they are independent, we do
not assume that the variance of vi for instance, is zero, leading to the final result.

Therefore, plimN−1
∑N

i=1(x̂i)
2wi ̸= 0, and the regressor is asymptotically correlated with the

composite error term wi, leading to inconsistency. Note that this problem mostly arises as:

plimN−1
N∑
i=1

(x̂i)
2wi = plimN−1

N∑
i=1

(x̂i)
2
(
β(x2

i − (x̂i)
2) + ui

)
̸= plimN−1

N∑
i=1

(x̂i)
2
(
β(xi − x̂i)

2 + ui

)
= 0

Given this latter observation, there is a variation that is consistent, in which in the first
stage we regress x2 directly on z, rather than x on z, the we use the prediction x̂2 ( ̸= x̂2) in
the second stage. In the scalar case, we can show that this equals βIV .

3
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β̂2SLS =

(
N∑
i=1

x̂2
i x̂

2
i

)−1 N∑
i=1

x̂2
i yi

=
(
x̂2

′
x̂2
)−1

x̂2
′
y

= (z′π̂π̂z)
−1

z′π̂y

= (z′π̂z)
−1

z′y

= (z′zπ̂)
−1

z′y

=
(
z′z(z′z)−1z′x2

)−1
z′y

= (z′x2)−1z′y = β̂IV

In the result above we use the fact that π̂ is a scalar, and that π̂ = (z′z)−1z′x2. Moreover, this
example generalizes to other non-linear models where the nonlinearity is only in the regressors,

such that y = g(x)′β + u. Then, we use ˆg(x) rather than g(x̂) as instruments for g(x).

1.2 Optimal moment conditions/Optimal instruments

Once again, we start with essentially the same recap of GMM estimators for the overidentified
case. We estimate the parameters θ (change of notation!) by the value that makes the weighted
squared Euclidean length the smallest:

QN (θ) = gN (θ)′WNgN (θ)

where gN (θ) = 1
N

∑N
i=1 h(wi, θ) is the sample analogue of the moment conditions E[h(w; θ0)] =

0, w includes the vectors y, x and z. Moreover, the weight matrix satisfies WN
p−→ W0 > 0,

intuitively, it gives different weights to different moments.

The FOC is given by:

∂gN (θ)′

∂θ

∣∣∣∣
θ=θ̂

×WN × gN (θ̂) = 0

Defining the derivative matrix: GN (θ) = ∂gN (θ)
∂θ′ = 1

N

∑N
i=1

∂hi(θ)
∂θ′ , with hi(θ) = h(wi, θ), the

FOC is then:

GN (θ̂)′WNgN (θ̂) = 0

And, by mean-value expansion, we can then obtain the asymptotic distribution of the estimator
given by:

√
N
(
θ̂ − θ0

)
d−→ N

[
0, (G′

0W0G0)
−1

G′
0W0S0W0G0 (G0

′W0G0)
−1
]

The term S0 is essentially the variance of the moment conditions, given by:

√
NgN (θ0) =

1√
N

N∑
i=1

hi (θ0)
d→ N [0, S0]

4
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with S0 = E[h(θ)h(θ)′]−1. The idea behind the optimal weighting matrix is that, if we choose
W0 = S−1

0 , then the asymptotic variance is reduced, leading to efficiency:

√
N
(
θ̂ − θ0

)
d→ N

[
0,
(
G1

0S
−1
0 G0

)−1
]

This efficiency is only for a given initial moment condition. However, we can also choose
optimal moment conditions that leads to efficiency.

Suppose you have the conditional moment restriction:

E[r(yi, xi, θ0)|Z] = 0

We showed before that we can rewrite this moment condition as E[Zr(yi, xi, θ0)] = 0. However,
in this expression, instead of Z, we could also have any function of Z, say D(Z), leading to:

E[D(Z)′r(y, x, θ0)] = 0

From this moment condition, we could proceed normally to the GMM approach, what matters
is which choice of D(Z) should be made. To do so, we look at the terms of the asymptotic
variance of the GMM for this particular moment condition given by (G′

0S
−1
0 G0)

−1. The terms
are the following:

G0 = E[D(Z)′J ]

= E[E[D(Z)′J |Z]]

= E[D(Z)′E[J |Z]]

where Ji =
∂r(yi,xi,θ0)

∂θ′ .

S0 = E[D(Z)′r(y, x, θ0)r(y, x, θ0)
′D(Z)]

= E[D(Z)′E[r(y, x, θ0)r(y, x, θ0)′|Z]D(Z)]

= E[D(Z)′ΩD(Z)]

where, we denote E[r(y, x, θ0)r(y, x, θ0)′|Z] by Ω. Given the above expressions for G0 and S0,
we can now get the expression for the asymptotic variance.

(G′
0S

−1
0 G0)

−1 = E
[
E[J ′|Z]D(Z) (D′(Z)ΩD(Z))

−1
D′(Z)E[J |Z]

]−1

Denoting E[J |Z] = A, and proposing D(Z) = Ω−1A, which resembles a FGLS approach, and
plugging into the expression, we obtain:

(G′
0S

−1
0 G0)

−1 = E
[
A′Ω−1A

(
A′Ω−1ΩΩ−1A

)−1
A′Ω−1A

]−1

=

Which looks like a smaller asymptotic variance. To be formal about this result, we can compare
this variance with the standard one, for which no proposal was plugged in, and look at precision
instead of variance:
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A′Ω−1A−A′D(Z) (D′(Z)ΩD(Z))
−1

D′(Z)A = A′Ω−1/2
(
I − Ω1/2D(Z) (D′(Z)ΩD(Z))

−1
D(Z)′Ω1/2

)
Ω−1/2A

= A′Ω−1/2MΩ1/2D(Z)Ω
−1/2A ≥ 0

where we use that, by Choleski decomposition, Ω−1 = (Ω−1/2)′Ω−1/2, and we reach to the
conclusion of it being positive since the final term is a quadratic term.

Therefore, the optimal moment is given by the function:

D(Z) = Ω−1A

D(Zi) =
1

Var(r(yi, xi, θ0)|Zi)
E
[
∂r (yi, xi, θ0)

∂θ′0
| Zi

]
As noticed before, there are some similarities with the GLS approach. For the GLS we would
get the following moment condition:

E[X ′Ω−1(y −Xβ)] = 0

which leads to the estimator β̂ = (X ′Ω−1X)−1X ′Ω−1y, which can be written in terms of the

transformed data X∗ = Ω−1/2X as: β̂ = (X∗′X∗)−1X∗′y∗.

This result of optimal moment conditions also has implications for choosing optimal instru-
ments. For instruments Z for endogenous regressors X, the optimal moment condition would
be:

E[Z ′Ω−1(y −Xβ)] = 0

Then, the asymptotic variance would be given by:

plim
1

N

(
Z ′Ω−1(y −Xβ)(y −Xβ)′Ω−1Z

)
= plim

1

N
Z ′Ω−1Z

Moreover, the criteria function of the GMM and its associated FOC would be:

QN (β) =
1

N
(y −Xβ)′Ω−1Z(Z ′Ω−1Z

)−1
Z ′Ω−1(y −Xβ)

FOC : − 2

N
X ′Ω−1Z

(
Z ′Ω−1Z

)−1
Z ′Ω−1(y −Xβ) = 0

Then, thinking in terms of transformed data, we can rewrite:

X∗′Z∗ (Z∗′Z∗)
−1

Z∗′ (y∗ −X∗β) = 0

Finally, the estimator is:
β̂ = (X∗′PZ∗X∗)−1X∗′PZ∗y∗

Which is essentially the expression for the 2SLS estimator considering transformed data. That
is, using optimal instruments is the same as using transformed data.
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1 Fixed and Random Effects

1.1 A Recap of the Lecture

Consider the following panel data model:

yit = αi + x′
itβ + εit

αi = γ0 + z′iγ1

Related effects: αi and xit are correlated, so αi is treated as a fixed nuisance parameter (FE).
Unrelated effects: αi and xit are independently distributed, so αi is treated as a part of the
error term (RE).

Random effects (RE) are unrealistic for observational data, since, typically, omitted and in-
cluded regressors show multicollinearity.

Considering the model above, when we suppose that N (i = 1, ..., N) is small and T (t =
1, ..., T )is large one can consistently estimate the fixed effects αi and the slope parameter β
by including individual-specific dummies. The steps would then be to first create N dummy
variables di,it, ..., dN,it with dj,it = 1 if j = i and 0 otherwise. Note also that the dummies are
time invariant, dj,it = dj,i. Then, the model can be expressed as:

yit = α1d1,i + ...+ αNdN,i + x′
itβ + εit

The model is then estimated with OLS:

min
α,β

N∑
i=1

T∑
t=1

(yit − ŷit)
2

min
α,β

N∑
i=1

T∑
t=1

(
yit − α̂1d1,i − · · · − α̂NdN,i − x′

itβ̂
)2

Note that we will then have N + K parameters to be estimated, when N is large (tending
to infinity), we have the incidental parameter problem, which is caused by the fact that
we will then have many parameters to be estimated, while having only a fixed number of T
observations to estimate each of then. Note however, that this causes inconsistency only for the
fixed effects α, and not for the slope parameter β in linear models, since we will show later that
the dummy approach leads to the same estimate of the within transformation algebraically.
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However, for non-linear models such as probit and logit, the incidental parameter problems
may lead to (asymptotically) biased estimates of the slope parameters as well.

Possible solutions for estimating a linear model with FE:

• The within transformation
We first take the time average of the linear model above:

ȳi = αi + x̄i
′β + ε̄i ȳi =

1

T

T∑
t=1

yit

Then we subtract this averages from the original model, resulting in:

yit − ȳi = (xit − x̄i)
′
β + εit − ε̄i

Where clearly the fixed effects where differenced out, and one can simply carry an OLS
estimation of the latter model.

• First differences transformation
Essentially the same idea behind the previous transformation, but instead of subtracting
the time average for each individual i, we subtract the model evaluated at the previous
period t− 1:

yit − yit−1 = (xit − xit−1)
′β + (εit − εit−1)

∆yit = ∆x′
itβ +∆εit

However, the solutions above do not work in some cases:

−→ if the regressors do not change over time xit = xi

−→ lagged variables cannot be a part of the original regressors, because otherwise the regressors
of the transformed model are correlated with the error term, and an IV-GMM approach would
be needed:

yit − yit−1 = (yit−1 − yit−2)
′β + εit − εit−1

2 Non-linear panel data

Examples: panel logit, poisson regression, etc.
We consider here a way of differencing out the fixed effects in a panel logit case, with T = 2
(but the method is easily extendable for T > 2.

Consider the binary dependent variable model:

yit = 1 {x′
itβ + αi + εit ⩾ 0} , t = 1, 2

If the error terms follow a logistic distribution, then we can write:

P (yit = 1 | xi1, xi2, αi, β) =
exp (x′

itβ + αi)

1 + exp (x′
itβ + αi)

2
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The ”trick” is then to consider 2 possible sets of outcomes in order to difference out the fixed
effects:

A = {yi1 = 0, yi2 = 1} , B = {yi1 = 1, yi2 = 0}

Then, using the expression above and from Bayes rule, we can derive the probability of one of
the two sets occurring given that we observe only observations in one of the two sets:

P (yi1 = 0, yi2 = 1 | yi1 + yi2 = 1, xi2, xi2, αi, β) = P (A | A ∪B, xi1, xi2, αi, β)

=
P (A | xi1, xi2, αi, β)

P (A | xi1, xi2, αi, β) + P (B | xi1, xi2, αi, β)

We also know, from the logistic distribution that:

P (A | xi1, xi2, αi, β) =
1

1+exp(x′
i1β+αi)

· exp(x′
i2β+αi)

1+exp(x′
i2β+αi)

P (B | xi1, xi2, αi, β) =
1

1+exp(x′
i2β+αi)

· exp(x′
i1β+αi)

1+exp(x′
i1β+αi)

By substituting these expressions in the previous equation we have:

P (yi1 = 0, yi2 = 1 | yi1 + yi2 = 1, xi1, xi2,αi, β) =
exp (x′

i2β + αi)

exp (x′
i2β + αi) + exp (x′

i1β + αi)

=
exp (∆x′

i2β)

1 + exp (∆x′
i2β)

The final expression is then free of fixed effects, and it still follows a logistic function, and thus
a logit model can be employed by redefining the dependent variable as:

wi =

{
1 if (yi1, yi2) ∈ A

0 if (yi1, yi2) ∈ B

3 The dummy approach is algebraically equal to the within
transformation

First, we stack the original panel data model over time:

yi = eαi + xiβ + εi

where xi is a (T ×K) matrix of covariates, and e is a (T × 1) vector of ones. Then, we further
stack over individuals:

y = δα+ xβ + ε

where y and ε are now (NT × 1) vectors, x is a (NT ×K) matrix of covariates, α is the vector
of fixed effects, α = (α1, ..., αN )′ and δ is a (NT ×N) matrix defined as δ = IN ⊗ e.

Our goal is to show that the estimated β when considering the dummy variables and an OLS
regression is the same as the one obtained by the within transformation. To show that, we first
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use the Frisch-Waugh-Lovell theorem, that states that the OLS estimation of the model above
is equivalent to the estimation of the following model:

Mδy = Mδδα+Mδxβ +Mδε

where Mδ = I − δ(δ′δ)−1δ′ is the residual maker matrix of δ, that is, it projects into the or-
thogonal space spanned by δ.

Remembering that the within transformation is given by premultiplying the original model
(stacked over time only) by the matrix Q = IT − 1

T ee
′, we then aim to show that the projection

matrix Mδ is equivalent to IN ⊗ Q (we have it multiplied by IN , as we are working with the
model stacked over time and units, and we want to apply the within transformation for all
individuals).

To start with, a little reminder of Kronecker-product rules:

(A⊗B)′ = A′ ⊗B′

(A⊗B)(C ⊗D) = AC ⊗BD

(A⊗B)−1 = A−1 ⊗B−1

A⊗ (B + C) = A⊗B +A⊗ C

Then, we also obtain the following expressions, by definition, and using that δ = IN ⊗ e:

Mδ = INT − Pδ

Pδ = δ(δ′δ)−1δ−1δ′

= IN ⊗ e ((IN ⊗ e)′(IN ⊗ e))
−1

(IN ⊗ e)′

We can further work out the expression of Pδ using (i) the Kronecker product rules, (ii) the
fact that IN = I ′N , and (iii) e′e is simply equal to T :

Pδ = (IN ⊗ e) ((IN ⊗ e′)(IN ⊗ e))
−1

(IN ⊗ e′)

= (IN ⊗ e) ((IN ⊗ e′e))
−1

(IN ⊗ e′)

=
1

T
(IN ⊗ e)(IN ⊗ e′)

=
1

T
(IN ⊗ ee′)

= IN ⊗ 1

T
ee′

Then we can plug this in for Mδ = INT − Pδ, and using the fact that INT = IN ⊗ IT :

Mδ = INT − IN ⊗ 1

T
ee′

= (IN ⊗ IT )− (IN ⊗ 1

T
ee′)

= IN ⊗
(
IT − 1

T
ee′

)
= IN ⊗Q
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Which concludes the proof.

4 GLS First Differences Estimator

The aim of this section is to show that when estimating the FD model through a GLS proce-
dure (since the first-differencing leads to correlation between the transformed error terms), the
obtained estimator is the same as the one obtained with the within transformation.

Consider the model stacked over periods:

yi = eαi + x′
iβ + εi

Then, we take the first difference of this model by premultiplying it by a given matrix DT that
produces this first difference:

DT yi = DT eαi +DTx
′
iβ +DT εi

Note that DT is a (T − 1×T ) matrix, since one observation is lost due to the first differencing.
Moreover, we have necessarily that the fixed-effects are differenced out, that is, DT eαi = 0.
Therefore:

DT yi = DTx
′
iβ +DT εi

We can further stack over individuals, and denote D = IN ⊗ DT , which is equivalent to
premultiply all individuals by the matrix DT :

Dy = Dxβ +Dε

Then, it is easy to obtain the variance of the new error terms for both the model stacked only
over time periods, or over both dimensions, by assuming homoskedasticity:

Var(DT εi) = E[DT εiε
′
iD

′
T ]

= DTσ
2
εITD

′
T

= σ2
εDTD

′
T

Var(Dε) = σ2
εDD′

Taking Ω = σ2
εDD′, and performing GLS with the transformed model, i.e., running an OLS

of y∗ = DyΩ−1/2 on x∗ = DxΩ−1/2 we obtain:

β̂GLS = ((Dx)′(DD′)−1Dx)−1(Dx)′(DD′)−1Dy

= (x′D′(DD′)−1Dx)−1x′D′(DD′)−1Dy
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We can then look at what D′(DD′)−1D looks like:

D′ (DD′)
−1

D = (IN ⊗D′
T ) ((IN ⊗DT ) (IN ⊗D′

T ))
−1

(IN ⊗DT )

= (IN ⊗D′
T )

(
IN ⊗ (DTD

′
T )

−1
)
(IN ⊗DT )

= IN ⊗
(
D′

T (DTD
′
T )

−1
DT

)
= IN ⊗

(
IT − 1

T
ee′

)
which yields then exactly the same result as the within transformation, since the final result is
given by D′ (DD′)

−1
D = IN ⊗Q, which is an idempotent matrix.
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