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Abstract

A novel estimation method for distribution regressions in a network setting is proposed. It con-

siders the effects of covariates on the entire outcome distribution rather than solely on the mean.

I adopt a semiparametric approach by considering two-way unit-specific effects. Thus, I extend

the standard distribution regression approach to a network setting by estimating multiple binary

choice models with two-way fixed effects for different thresholds of the distribution. I employ a

conditional maximum-likelihood approach that differences out the unit-specific effects, avoiding

the incidental parameter problem. This method yields consistent point estimates that converge

at a parametric rate and remain asymptotically unbiased in the tails of the outcome distribu-

tion, where the underlying network can be seen as sparse. Monte Carlo simulations validate these

findings for single cut-off points and the overall outcome distribution. The empirical application

focuses on gravity equations for bilateral trade, demonstrating the effectiveness of the proposed

approach in cases where the outcome variable is bounded below at zero.
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1. Introduction

The vast majority of studies, especially for network models, propose estimates for the effects

of covariates on the mean of an outcome variable. However, in many cases, the effects on the

entire distribution of the outcomes are also an object of interest. For instance, in applications for

international trade models, one might be interested not only in the effects of tariffs on the mean

level of exports from one country to another but also in understanding how (and whether) this

effect may vary for different quantiles of the distribution of trade flows. In a more straightforward

cross-sectional case, such varying effects can be estimated via the distribution regression (DR)

approach initially proposed by Foresi and Peracchi (1995).

Motivated by the current abundance of network datasets and the estimation of international

trade flows (which naturally constitutes a network setting where countries form bilateral ties),

an estimation method for the DR in a network framework is provided. The contributions of this

paper are threefold: (i) I propose an estimation method that is free of the incidental parameter

problem, being valid also for estimation in the tails of the distribution of the outcomes (where, as

later discussed, the underlying network structure becomes sparse, imposing additional estimation

challenges); (ii) I provide the asymptotic properties of the estimator, and I show in Monte Carlo

simulation exercises the performance of the estimator in finite samples; (iii) I illustrate the

method with an application to the estimation of gravity models for international trade flows.

A broad range of economic relationships can be modeled through a network perspective,

particularly through bilateral ties of agents. Relevant examples include models for international

trade flows (Helpman et al. 2008), as mentioned before, as well as models for firm-level trade

(Alfaro-Urena et al. 2023), for risk sharing (Fafchamps and Gubert 2007), for the diffusion of

microfinance loans (Banerjee et al. 2013), and for earnings in employee-employer data (Bon-

homme et al. 2019). I, therefore, consider a directed network structure through a dyadic model,

in which the outcomes reflect pairwise interactions among the sampled units (Graham 2020). A

key aspect of dyadic regressions is the inclusion of observed dyad-level (pair-level) characteristics

and unobserved unit-specific effects for each unit in the dyad (both senders and receivers in a
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directed framework), which captures the unobserved individual heterogeneity of units. I treat the

unit-specific effects as fixed parameters to be estimated, such that their distribution, conditional

on the covariates, is left unrestricted. Next, because the estimated effects can also vary with the

level of the outcome, the considered model is semiparametric.

The DR approach was initially proposed by Foresi and Peracchi (1995) for the cross-sectional

case with independent observations. Its central idea is to directly model the conditional cumu-

lative distribution function of the outcomes, which describes the likelihood of a random variable

taking on a value less or equal to a particular value in its support. In the international trade ex-

ample, it translates to the probability of trade flows being smaller or equal to a specific threshold

value. Therefore, the DR approach boils down to estimating the conditional distribution of the

outcome of interest with a finite sequence of binary response variables (and thus, a sequence of

discrete choice models). More specifically, each binary response outcome is given by an indicator

function of the observed dependent variable of interest being below some threshold (for instance,

a corresponding quantile). By varying the value of these thresholds, an entire characterization

of the conditional distribution of the outcome is obtained. Chernozhukov et al. (2013) extended

this approach to a continuum of binary response estimators. However, in practice, the method

encompasses, in both cases, the estimation of a sequence of discrete choice models over a grid of

values of the dependent variable’s support.

The model for each threshold is inherently non-linear since it is a discrete choice model. Due

to such non-linearity, including the two-way fixed effects to accommodate the dyadic structure

leads to the incidental parameter problem (Neyman and Scott 1948) when jointly estimating

all the parameters for a given threshold. In the specific setting considered in this paper, the

incidental parameter problem manifests itself by asymptotic bias(es) in the limit distribution of

the scaled parameter(s) of interest, resulting in invalid inference.

To deal with the incidental parameter problem, I propose to extend the conditional maximum-

likelihood approach of Charbonneau (2017) to estimate single binary choice network models

under a logistic specification to multiple (possibly a continuum of) binary choice models for the
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thresholds. Note that the estimator of Charbonneau (2017) was initially proposed for a directed

network formation model; however, since the structure of those is that of a dyadic discrete choice

model, it is also suitable for each of the thresholds of the DR framework. The approach mentioned

above relies on conditioning the likelihood function on a specific set of conditions for quadruples

of nodes of the network, such that, when the underlying distribution of the outcomes is logistic, it

differences out the fixed effects from the likelihood. To show the pointwise asymptotic properties

for this estimator for the DR, I use results from Jochmans (2018). This estimator is consistent

and converges asymptotically (pointwise) to a Gaussian limit distribution centered around the

true parameter value at a parametric rate, delivering valid inference for each of the considered

thresholds.

To my knowledge, one of the few papers in the literature that proposes an estimator for the

DR model in the framework of a network is Chernozhukov et al. (2020). The key difference in my

approach relates to the estimation method employed for each threshold. They propose to deal

with the incidental parameter problem by independently employing analytical bias correction

estimates for each threshold. However, in the context of a network formation model, an essential

assumption for the consistency of this estimator is that the underlying network is dense (Dzemski

2019). In the DR setting, this translates to the conditional probability of the outcomes being

smaller than a given threshold to be bounded away from zero or one (Chernozhukov et al. 2020).

That is, the estimates are not guaranteed to be consistent and lead to valid inference in the

extremum quantiles of the conditional distribution of the outcomes. This problem is attenuated

when the outcomes of interest are bounded below at zero and contain many zeros (or another

value) since the thresholds of interest lie mostly in the extremum quantiles, a region in the

support of the outcome of interest where for a given threshold, the generated binary variable

will have little or no variation for some units in the dyad rendering the fixed effects to be not

identified.

On the other hand, the conditional maximum likelihood approach proposed here allows for a

higher degree of sparsity in the underlying network, being also valid in the extremum quantiles
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of the conditional distribution and in situations of outcomes with many zeros. These results are

also observed in finite samples through Monte Carlo studies for both the estimates of a given

threshold of the distribution (which is essentially a network formation model, as seen in the

following Sections), and for the estimates of the entire distribution.

I consider an empirical application to gravity equations for bilateral trade between countries,

a natural application of bilateral network models of great economic relevance. In this case, the

relevant outcome variable is bounded below at zero, indicating the presence of a heavy upper tail

in the distribution, therefore, the DR approach is well-suited for this application (Chernozhukov

et al. 2020). I show that the estimated coefficients of the distribution regression vary substantially

across the different quantiles of the level of trade flows and are also substantially different from the

estimates obtained via analytical bias corrections. Although the estimation procedure proposed

does not deliver the average effects of the trade barriers on trade flows (since the individual fixed

effects are differenced out and, hence, not estimable), the estimated coefficients have a clear

relation to the marginal effects of the quantile function, providing a further interpretation of the

estimates. Moreover, in this particular application, joint confidence bands on the estimates allow

for testing whether the elasticities of gravity models of trade are heterogeneous, a property that

ultimately affects welfare analysis in the international trade literature (Arkolakis et al. (2012),

Melitz and Redding (2015), Chen and Novy (2022)).

Plan of the paper. Section 2 outlines the main model to be estimated; Section 3 provides the

estimation method; Section 4 shows the asymptotic properties of the proposed estimator; Section

5 provides the Monte Carlo simulation results for both a single threshold of the distribution and

for the entire distribution; Section 6 outlines the application for gravity models of international

trade; and Section 7 concludes.

2. A Distribution Regression Model for Networks

This Section introduces a model for the DR approach that considers a directed network

structure formed through bilateral ties of units. As initially proposed by Foresi and Peracchi
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(1995), the DR provides a modeling approach for the conditional distribution of the outcomes.

To accommodate the network framework, a general dyadic setting is considered. Therefore, the

conditional distribution function is parametrized as a function of dyad-specific characteristics

and fixed effects for each unit in the observed pair of nodes.

Let {(yij ,xij) : (i, j) ∈ D} be the observed dataset, where yij is a scalar outcome variable that

can be discrete, continuous or mixed for a dyad (i, j), and xij is a vector of covariates. I assume

that there is a specific region of interest Y contained in the support of the outcome of interest

and that the vector of covariates has support X ⊆ Rdx . The set of nodes1 in the network is given

by N = {1, 2, . . . , N}, and the total number of observed dyads is given by n = |D|= N(N − 1).

The set D contains, without loss of generality, the indices of the pairs (i, j) that are observed in

a directed network without self-links, i.e., D = {(i, j) : i = 1, . . . , N, j = 1, . . . , N} \ {(i, i) : i =

1, . . . , N}2.

The individual fixed effects for units i and j are taken into account through vectors of

unspecified dimensions νi and ωj that contain unobserved random variables or effects that might

be arbitrarily related to the covariates xij . Therefore, they can be seen as nuisance parameters.

The conditional distribution of yij given (xij ,νi,ωj) is given by:

Fyij (y | xij , vi, wj) = Λ
(
x′
ijβ0(y) + α (νi, y) + γ (ωj , y)

)
, y ∈ Y, (i, j) ∈ D, (1)

where Λ(·) is a known link function assumed to be the logistic distribution throughout this paper.

β0(y) is an unknown parameter vector of interest that varies with the levels of y; and α (νi, y)

and γ (ωj , y) are unspecified measurable functions that can be seen as the unobserved individual

fixed effects at a given level of y. This model is naturally semiparametric, not only because

the parameters are allowed to vary with the output levels but also because it does not restrict

how the individual unobserved effects correlate with the covariates. As shown in Appendix A,

1Thoughout the paper, I use units, nodes, or individuals interchangeably.
2We consider that all the nodes are senders and receivers, but the method in this paper also allows for cases

where the nodes that are senders differs from the nodes that are receivers, i.e., i = 1, . . . , I and j = 1, . . . J , with
I ̸= J ; and also for self-links to be formed.
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modeling the conditional distribution by this link function is equivalent to reparametrizing the

problem in terms of log-odds ratios as initially proposed by Foresi and Peracchi (1995).

A key feature of models of dyadic interaction is the introduction of the two-way fixed effects.

Given the double indices nature of the model, it is reasonable to assume that it exhibits a two-way

error component structure captured by both units’ nuisance terms. This structure incorporates

essential aspects of networks since it accounts for part of the dependence across dyads.3 For

instance, the outcome determined from the pairwise interaction between units i and j can be

correlated with the outcome resulting from the interaction between i and k due to the fixed effect

for unit i and possible correlations in the covariates that share the index i in common. Finally, by

allowing the fixed effects for senders and receivers to be different, together with yij and xij not

necessarily being equal to yji and xji, this model allows for directed networks. However, notice

that the model outlined in this Section and the estimator proposed in the following Section can

be easily modified to accommodate undirected and bipartite networks.

Finally, the conditional distribution Fyij (y | xij ,νi,ωj) can be written as:

Fyij (y | xij ,νi,ωj) = E[1{yij ≤ y} | xij ,νi,ωj ]

= Pr[ỹij = 1 | xij ,νi,ωj ]

= Λ
(
x′
ijβ0(y) + α (νi, y) + γ (ωj , y)

)
, (2)

where the first equality follows from the definition of a conditional distribution function, and the

third equality follows from the specified model in Equation (1). The second equality follows from

the probability of an outcome yij being smaller or equal to a threshold y can be expressed as the

probability of a binary variable ỹij , which is one if the outcome is below y and zero otherwise,

being equal to one. Therefore, by constructing a collection of binary variables ỹij = 1{yij ≤ y},

for all pairs (i, j) ∈ D and all points in the region of interest Y, y ∈ Y, the parameters of the

DR model can be estimated by a sequence (or continuum) of binary (logistic) regressions with

3In this model, part of the dependence also stems from the possibility that the covariates for a given node are
correlated.
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two-way fixed effects. By varying the threshold y value, it is possible to obtain the estimated

slopes for the entire region of interest Y. In practice, when Y is not finite, it is replaced by a

finite subset Y.

Remark 1. As in Chernozhukov et al. (2020), this approximation works provided that the

Hausdorff distance between Y and Y goes to zero at a rate faster than 1/
√
n. In practice, if

Y is an interval [y, ȳ],Y can be a fine mesh of
√
n log log n equidistant points covering Y, i.e.,

Y = {y, y + d, y + 2d, . . . , ȳ} for d = (ȳ − ȳ)/(
√
n log log n). Alternatively, if Y is the support of

yij ,Y can be a grid of
√
n log log n̄ sample quantiles with equidistant indexes.

Despite the equivalence between the conditional distribution function and the conditional

quantile function in terms of characterizing the conditional distribution of an outcome variable

(namely, one function is the inverse of the other), there are important reasons behind choosing

the DR over a quantile regression (QR)4. In particular, the linear-in-parameters QR may provide

a poor approximation to the conditional distribution when the outcome variable does not have

a smooth conditional density. In contrast, the DR does not require such smoothness since the

approximation to the conditional distribution is made pointwise at each defined threshold in the

support of the outcome. Thus, the DR method is well-suited for cases where the variable of

interest is censored, or discrete, or has, in general, point masses in its distribution5. Finally, to

my knowledge there are no available methods for QR models that can allow for two-way fixed

effects.

For a given threshold, a discrete choice model, inherently non-linear, with two-way fixed

effects, should be estimated to employ the DR method. It is well-known in the literature that

the traditional maximum likelihood approach suffers from the incidental parameter problem

in these cases. In this particular setting, where both dimensions of the pseudo-panel tend to

4Notice that the estimated coefficients of a DR and a QR are only relatable if the set of covariates is rich
enough (Chernozhukov et al. 2013).

5Even though there is literature on the estimation of QR for censored dependent variables, such as in Galvao Jr
(2011) and Chernozhukov et al. (2015), there are no available methods (to my knowledge) for network models.
Moreover, the DR approach is more general because it allows for arbitrary mass points in the distribution of the
outcome.
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infinity at the same rate, the incidental parameter problem manifests as an asymptotic bias

in the limiting distribution of the slope parameter β0(y), leading to incorrect inference. In

Appendix B, I demonstrate how the asymptotic biases arise in this framework, based on results

from Fernández-Val and Weidner (2016).

3. Estimation method

As outlined in the previous Section, the main challenge in the estimation of the sequence

of binary regressions given by Equation (2) is that, even for a single binary regression, the

incidental parameter problem (Neyman and Scott 1948) stems from the presence of the two-way

fixed effects. To circumvent this problem, I propose to estimate the parameters of the model

β(y) for each threshold point (for a given level y), independently, with the conditional maximum-

likelihood method suggested by Charbonneau (2017) (for directed networks) and concurrently by

Graham (2017) (for undirected networks). The core of this approach is to extend the conditional

maximum likelihood method for logistic standard panel data models with one fixed effect in

Rasch (1960) and Chamberlain (2010)6 to models with two-way fixed effects, accommodating

dyadic structures. The method relies on the existence of a set of conditions for quadruples of

nodes in the observed network that differences out the fixed effects from the likelihood when

the link function follows a logistic distribution. Estimating binary panel data models by a

conditional logit estimation is a well-known semiparametric technique since it avoids specifying

the distribution of the fixed effects conditional on covariates. While it seems restrictive due

to the distributional assumption, Chamberlain (2010) showed that estimating such models at a

parametric rate is only possible when the error terms are logistic. Moreover, it is only possible

to difference out the fixed effects under a logistic specification.

The approach of Charbonneau (2017) was initially proposed for network formation models.

However, it is applicable to the model that I consider for a single cutoff point since it resembles

that of a bilateral network formation model. This follows because it is a discrete choice model

6Also refer to Arellano and Honoré (2001) for a survey.
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with fixed effects for each node and dyad characteristics. For the sake of simplicity, and without

loss of generality, I denote β(y) = βy, αi,y = α(νi, y) and γj,y = γ(ωj , y).

From the conditional distribution Fyij and the constructed binary variables ỹij :

ỹij = 1{x′
ijβy,0 + αi,y + γj,y + εij ≥ 0}, (i, j) ∈ D

where αi,y and γj,y are fixed effects that depend on the level of the threshold y, and we assume

that εij follows a logistic distribution. Therefore:

E[1{yij ≤ y} | xij , αi,y, γj,y] = Pr[ỹij = 1 | xij , αi,y, γj,y]

=
exp(x′

ijβy,0 + αi,y + γj,y)

1 + exp(x′
ijβy,0 + αi,y + γj,y)

(3)

Proposition 1. Under the model specification given by Equation (3), the sums across each

dimension of the pseudo panel,
∑N

j=1 ỹij and
∑N

i=1 ỹij, are sufficient statistics for αi,y and γj,y.

Proof. shown in Appendix C.

While this statement is previously proved for the standard panel case with one fixed effect,

Graham (2017) only implicitly provides this result for undirected networks. Even though one

could propose a conditional maximum likelihood estimator based on the sufficient statistics,

the maximization problem might be intractable. Fortunately, Charbonneau (2017) provides a

more tractable solution by showing that it is possible to difference out the two-way fixed effects

by further conditioning the above probability on the set of events {ỹij + ỹik = 1, ỹlj + ỹlk =

1, ỹij + ỹlk = 1} for different indices of senders and receivers {i, l; j, k}, such that:

Pr[ỹij = 1 | xij , αi,y, γj,y, ỹij + ỹik = 1, ỹlj + ỹlk = 1, ỹij + ỹlk = 1]

=
exp(((xij − xik)− (xlj − xlk))

′βy,0)

1 + exp(((xij − xik)− (xlj − xlk))′βy,0)
, (4)

which also no longer depends on the fixed effects. This result is obtained by applying the same

trick as usually used for the logit estimation in a static standard panel model with a single fixed
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k l

Figure 1: Main configurations of informative subgraphs. Solid arrows indicate links that should be present, while
dashed arrows indicate links that should not be present.

i j

k l

Subgraph 1: Informative

i j

k l

Subgraph 2: Not informative

Figure 2: Examples of an informative and a non-informative configuration of quadruples to the likelihood.

effect twice.

The last expression is then applied to all quadruples of observations that satisfy the conditions

above. Hence, the function to be maximized is given by:

N∑
i=1

N∑
j=1,j ̸=i

∑
l,k∈Zij

log

(
exp(((xij − xik)− (xlj − xlk))

′βy)

1 + exp(((xij − xik)− (xlj − xlk))′βy)

)
, (5)

where Zij is the set of all potential nodes k and l that satistifies the conditions {ỹij + ỹik =

1, ỹlj + ỹlk = 1, ỹij + ỹlk = 1} for the pair ij. In the next Section, I show that a simple pairwise

differences transformation of the outcomes ỹij and the covariates xij followed by a logit estimation

leads to the implementation of this estimator.

As in the case of the static logit considered in Rasch (1960) and Chamberlain (2010), the units

that are informative for the likelihood are considered movers. In other words, a given quadruple

{i, l; j, k}, will only be informative for the likelihood if the outcomes, for instance, for node i have

variation. To illustrate this argument, consider Figure 1, where every possible wiring rendering

an informative quadruple delivers a set of outcomes for each unit (considering a unit both as a
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sender and receiver) that has variation. More specifically, Figure 2 shows a configuration that

is informative for the likelihood (Subgraph 1), and a not informative configuration. It is clear

that, for instance, in Subgraph 1, the node i connects with node j, while it does not connect

with node k. On the contrary, in Subgraph 2 there is no variation in the outcomes for node i.

For further intuition for the identification of the common parameters, I refer to Appendix D.

4. Asymptotic properties

Throughout this Section, I treat the sequence of individual effects {αi, γj}N as fixed since I al-

ways condition on them. Moreover, I consider asymptotic approximations where both dimensions

of the pseudo-panel tend to infinity at the same rate.

The asymptotic properties for a single threshold value of the conditional distribution follow

from results provided in Jochmans (2018) for the estimator of Charbonneau (2017). Define the

following random variables by fixing a quadruple of distinct nodes {i, l; j, k} from N :

z(σ{i, l; j, k}) =
(ỹij − ỹik)− (ỹlj − ỹlk)

2

r(σ{i, l; j, k}) = (xij − xik)− (xlj − xlk),

where the function σ(·) maps a quadruple to the index setMn = {1, 2, . . . ,Mn}, Mn denoting the

number of distinct quadruples from N , i.e, Mn =
(
N
2

)(
N−2
2

)
= N(N−1)(N−2)(N−3)

4 .7 Each distinct

quadruple of nodes {i, l; j, k} corresponds to a unique σ{i, l; j, k} ∈ Mn. In the remainder of this

Section, I will use the shortcut notation zσ and rσ.

Notice that the transformed dependent variable can take values from the set {−1,−1/2, 0, 1/2, 1},

and that the event that z ∈ {−1, 1} corresponds to the condition {ỹij + ỹik = 1, ỹlj + ỹlk =

1, ỹij + ỹlk = 1}. Therefore, by collecting x = (xij ,xik,xlj ,xlk), the results in the previous

Section leads to the following Lemma:

7Notice that the number of quadruples reflect the fact that the senders are permutation invariant, and the
receivers as well.
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Lemma 1. (Sufficiency)

Pr[zσ = 1 | x, zσ ∈ {−1, 1}] = exp(r′σβy,0)

1 + exp(r′σβy,0)

As before, conditional on x and on zσ ∈ {−1, 1}, the distribution is logistic and does not

depend on fixed effects. The conditional log-likelihood of a quadruple is:

1{zσ = 1}logΛ(r′σβy,0) + 1{zσ = −1}log(1− Λ(r′σβy,0)),

which form the basis of the construction of the quasi-conditional maximum likelihood estimator

for βy. Hence, the model is estimated by maximizing the empirical counterpart of this conditional

log-likelihood for all distinct quadruples in M. The estimator can be written as:

β̂y = argmax
βy∈Θ

Ln(βy),

where Θ is the parameter space searched over, and

Ln(βy) =
∑

σ∈Mn

1{zσ = 1}logΛ(r′σβy) + 1{zσ = −1}log(1− Λ(r′σβy)).

It is clear at this point that the objective function is the same as the standard logit log-likelihood

function applied to all quadruples that satisfy zσ ∈ {−1, 1}. I denote the number of quadruples

satisfying it by M∗
n =

∑
σ∈Mn

1{zσ ∈ {−1, 1}}.

The following set of (weak) standard assumptions are needed to establish consistency of the

estimator:

Assumption 4.1. (Sampling) The N nodes in N are sampled independently.

Assumption 4.2. (Parameter Space) βy,0 is interior to Θ, a compact subset of Rdim(βy).

Assumption 4.3. (Moments) For all (i, j) ∈ D, E(||xij ||2) < C1, where C1 is a finite constant.
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Define the expected fraction of quadruples that contribute to the log-likelihood as:

pn =
E(M∗

n)

Mn
=

∑
σ∈Mn

1{zσ ∈ {−1, 1}}
Mn

.

Assumption 4.4. (Identification) Npn −→ ∞ as N −→ ∞ and the matrix

lim
N−→∞

(Mnpn)
−1

∑
σ∈Mn

E(rσr′σf(r′σβy,0)1{zσ ∈ {−1, 1}})

where f is the logistic density function has maximal rank.

Assumption 4.1 allows for dependence of the covariates across dyads that have nodes in

common, a key feature in network models. That is, the network dependence of the data arises

because not only do the same fixed effects appear across different pairs but also, the covariates

of a dyad might be correlated with those of a different dyad with one node in common. Note

that this accommodates for settings such as in Graham (2017), where it is assumed that the

covariates are of the form xij = g(xi, xj), where g(·) is a measurable function, but it is more

general than that. Assumption 4.2 is standard for establishing consistency in non-linear models.

Assumption 4.4 allows for the expected fraction of informative quadruples to shrink as N grows,

allowing for sparse networks in the context of network formation models. In the DR context, it

means that the probabilities of the events {yij ≤ y} need not be bounded away from zero and

one.

However, pn should not shrink faster thanN−1, implying that the accumulation of informative

quadruples should not cease as the sample grows. Notice that pn, which can be expressed as

Pr(zσ ∈ {−1, 1}), depends on the set of fixed effects of the quadruple σ. Thus, if the parameters

become unbounded as N grows, adding more nodes to the network may not provide additional

information for the likelihood. Assumption 4.4 allows for such sequences, such that the method is

robust to sparse networks. More specifically, as shown by Jochmans (2018), considering sequences

of fixed effects where αi,y and γi,y tend to −∞, and supposing that covariates have bounded
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support, by the exponential tails of the logistic distribution we have that, as N increases,

pn ∼

(∑N
i=1 e

αi,y

N

)2(∑n
i=1 e

γi,y

N

)2

.

Thus, we can translate the condition that Npn → ∞ into a restriction on the growth rate of

the fixed effects. It is also possible to link the rate condition to the probability of links being

formed, qn =
∑N

i=1

∑
j ̸=i Pr{ỹij = 1}/N(N − 1), that is, in the DR setting, the probability

qn =
∑N

i=1

∑
j ̸=i Pr{yij ≤ y}/N(N − 1), since, in the left tail,

qn ∼
∑N

i=1 e
αi,y

n

∑N
i=1 e

γi,y

n
.

Hence, qn ∼ √
pn. Importantly, in my setting (especially for the application and Monte Carlo

exercises), and for the sake of completeness of the argument for sparse networks in general, a

similar exercise can be done for sequences of fixed effects growing to ∞ with N . In this case,

qn → 1 and pn ∼ (1− qn)
2 → 0 at the same rates as above. That is, if the linking probability

approaches one, there is less accumulation of quadruples that are informative to the likelihood

as well. Based on the previous Section of this paper, the intuition behind it is that in both

scenarios, there will be less variation in the set of outcomes of units, rendering less informative

quadruples.

Assumption 4.2 and the second part of Assumption 4.4 are standard regularity conditions to

establish consistency in non-linear models (Newey and McFadden 1994). From an application of

Chebyshev’s inequality, the following Theorem holds:

Theorem 1. (Consistency) Let Assumptions 4.1-4.4 hold. Then β̂y
p→ βy,0 as N −→ ∞.

Proof. Follows from Jochmans (2018), a more detailed and slightly modified proof is available in

Appendix E.

Even though the empirical counterpart of the conditional log-likelihood has the form of a

standard static logit model for the cross-sectional case, the conventional standard errors are not

valid for the estimated β̂y. Because the score vector involves sums over quadruples of nodes,
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such that each node appears in different summands, it leads to dependences over such summands

that need to be considered. This results in an estimator based on a quasi-likelihood, where the

information matrix equality does not hold. To derive the asymptotic distribution of the estimator,

we first need to strengthen the moment requirements:

Assumption 4.5. (Moments) For all (i, j) ∈ D, E(||xij ||6) < C2, where C2 is a finite constant.

Then, each summand of the score vector is introduced as:

s(σ,βy) = rσ{1{zσ = 1}(1− Λ(r′σβy)) + 1{zσ = −1}Λ(r′σβy)}.

Hence, given the permutation invariance of senders and receivers, the score vector is:

Sn(βy) =

N∑
i

∑
j ̸=i

∑
l>i
l ̸=j

∑
k>j
k ̸=i,l

s(σ{i, l; j, k},βy)

The main result to characterize the distribution of the estimator is that Υn(βy,0)
−1/2Sn(βy,0)

d→

N(0, I), where:

Υn(βy) =
∑
i

∑
j ̸=i

∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

∑
i′′ ̸=i,j,i′,j′

∑
j′′ ̸=i,j,i′,j′,i′′

16×E
[
s(σ{i, j, i′, j′},βy)s(σ{i, j, i′′, j′′},βy)

′]
(6)

This result, combined with the Hessian that is given by:

Hn(βy) = −
∑

σ∈Mn

rσr
′
σf(r

′
σβy1{zσ ∈ {−1, 1}}).

And, finally, defining:

Ω̂ = Hn(β̂y)
−1Υn(β̂y)Hn(β̂y)

−1

We have:

Theorem 2. (Asymptotic distribution) Let Assumptions 1-5 hold. Then ||β̂y−βy,0||= Op(1/
√
N(N − 1)pn)
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and

Ω̂−1/2(β̂y − βy,0)
d→ N(0, I)

as N −→ ∞.

Proof. Follows from Jochmans (2018), a more detailed and slightly modified proof is available in

Appendix E.

The proof for Theorem 2 relies on steps that are akin to the ones taken when establishing the

limit distribution of a U-statistics, as in Graham (2017). We first propose a projection for the

score vector, that resembles a Hájek projection, but it is not formally one, since the kernel of this

projection is not symmetric, and we do not only condition on observable and unobservable at-

tributes of a specific dyad ij. However, similar steps ara taken when compared to the U-statistics

literature: we show that the score evaluated at the true parameter value is asymptotically equiv-

alent to the projection (conditional on covariates), by defining the asymptotic variance of the

projection and the score; and, by arguments of conditional independence, it is possible to derive

the limiting distribution. The main argument is that, following traditional dyadic models, the

probability of ỹij = 1 for a given dyad i, j is conditionally independent of the probability for the

remaining dyads, conditioning on the node (fixed effects) and dyad (covariates) characteristics8.

Therefore, this model belongs to the class of conditionally independent dyadic (CID) models

(Fafchamps and Gubert (2007), Graham (2020) for a review). Importantly, Theorem 2 shows

that pointwise (for each threshold y), the estimator converges at a parametric rate to the true

parameter value. Furthermore, it provides an estimate for the asymptotic variance that delivers

valid inference.

This paper is not the first in the literature to propose an estimation method for DR in a

network framework. Considering the same setting as in this paper, Chernozhukov et al. (2020)

propose to estimate the parameters of the model θ(y) := (β(y), α1(y), . . . αI(y), γ1(y), . . . γJ(y))

8One drawback is that transitivity across the probabilities is not taken into account by this model. It rules out
interdependent link preferences, where individuals’ preferences over a link may vary with the presence or absence
of links elsewhere in the network. However, it is shown by Dzemski (2019) that such a dyadic structure can recover
the transitivity observed in some datasets.
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also separately for each threshold. The key difference to my approach is that they employ a

maximum likelihood method with analytical bias corrections initially proposed by Fernández-

Val and Weidner (2016) to the standard panel data setting with two-way fixed effects (additive

or interactive) and both dimensions tending to infinity (large N and T) and later applied to the

context of a network by Yan et al. (2019) and Dzemski (2019).

Even though their approach encompasses a broader class of models, it does not completely

eliminate the asymptotic bias. In comparison, the pairwise difference eliminates it entirely by

differencing out the nuisance parameters. Besides, as mentioned before, in the context of a

network formation model, the asymptotic bias corrections require that the underlying network

is dense, meaning that, in the DR context, the conditional probabilities of the events {yij ≤ y}

are bounded away from zero and one. Therefore, in the extreme quantiles of the distribution,

such an approach might lead to a remaining asymptotic bias. As Assumption 4.4 indicates, the

method proposed in this paper allows for the expected fraction of quadruples to shrink to zero

as N grows, which implies that the probability of links forming can approach zero or one. Hence,

in the DR setting, it is also suitable for more extreme quantiles as opposed to the analytical bias

correction method.

5. Monte Carlo simulations

5.1. Monte Carlo simulations for a single threshold

In this section, I propose a set of Monte Carlo simulation studies for a single threshold y,

which boils down to a network formation model. The aim is to compare the performance of the

analytical bias correction methods to that of my approach under different levels of sparsity of

the network in finite samples. I follow a standard set of data generating processes (DGPs) for

directed networks, similar to those in Jochmans (2018).

The outcome variable is generated as follows:

yij = 1(xijβ0 + αi + γj − ϵij ≥ 0)
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where xij is a single regressor, the true parameter value β0 is set to one, αi and γj are sequences

of fixed effects, and ϵij are N(N − 1) draws from the standard logistic distribution, with N the

number of nodes in the network.

The single regressor is generated as:

xij = − | ui − uj |,

where ui = νi− 1
2 for νi ∼ Beta(2, 2). The fixed effects are a deterministic function of the sample

size:

αi = −N − i

N − 1
Cn, γi = αi

where the constant Cn usually depends on N . Specifically, the larger the value of Cn, the

sparser the generated network, where sparsity here is defined as the fraction of possible links

that are observed. I follow most of the literature and consider the following set of values for

it: Cn ∈ {0, log(log(N)), log(N)1/2, log(N)}. Importantly, the source of the dependence across

dyads comes from both the covariates structure and the inclusion of the fixed effects. Moreover,

I consider a set of number of nodes: N ∈ {25, 50, 70, 100}.

For each specification of the Design above, I run S = 1000 Monte Carlo repetitions and com-

pute the estimated coefficients, the estimated standard errors, and the size of the corresponding

t-statistic for the maximum likelihood estimator (MLE, logistic regression without corrections),

the analytical bias correction method (BC), and the conditional maximum likelihood estimator

(PD, standing for pairwise differences).

Remark 2. The computation of the bias-corrected estimates differs slightly from that of Cher-

nozhukov et al. (2020). I propose to estimate the coefficient β1 and the analytical bias corrections

taking into account only the subsample consisting of nodes i and j for which there is variation

in the outcome variables (thus preventing the perfect prediction problem). While the MLE es-

timates of β1 are, as expected, invariant to whether one considers the entire sample or only the

subsample, the estimates of the biases are not. This follows because, although the estimated
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fixed effects of the nodes that present no variation are not taken into account in the analytical

expression of the bias, the estimates of all fixed effects demonstrate a substantial variation when

(i) considering the entire sample or only a subsample or (ii) due to the choice of normalization of

the fixed effects. This sensitivity is aggravated when the normalized unit corresponds to a node

without variation in the outcome.

Table 1: Network statistics for simulated data according to Design 1. Based on 1000 Monte Carlo replications.
Percentage quadruples refer to the average percentage of informative quadruples for the likelihood across the
simulations, and percentage links refers to the average percentage of links in the network across the simulations.

N CN percentage
quadruples

pN percentage
Links

qN average
In-degree

average
Out-degree

25 0 0.1206 1.0000 0.4376 1.0000 10.5024 10.5024
50 0 0.1205 1.0000 0.4372 1.0000 21.4217 21.4217
70 0 0.1205 1.0000 0.4366 1.0000 30.1231 30.1231
100 0 0.1204 1.0000 0.4363 1.0000 43.1970 43.1970
25 log(log(N)) 0.0493 0.1232 0.2061 0.3509 4.9466 4.9466
50 log(log(N)) 0.0396 0.0898 0.1803 0.2996 8.8349 8.8349
70 log(log(N)) 0.0361 0.0788 0.1705 0.2808 11.7674 11.7674
100 log(log(N)) 0.0329 0.0696 0.1616 0.2638 15.9966 15.9966

25 log(N)1/2 0.0238 0.0486 0.1360 0.2206 3.2633 3.2633

50 log(N)1/2 0.0194 0.0369 0.1210 0.1922 5.9282 5.9282

70 log(N)1/2 0.0175 0.0328 0.1142 0.1810 7.8821 7.8821

100 log(N)1/2 0.0160 0.0291 0.1085 0.1706 10.7426 10.7426
25 log(N) 0.0047 0.0089 0.0596 0.0946 1.4313 1.4313
50 log(N) 0.0025 0.0043 0.0425 0.0654 2.0800 2.0800
70 log(N) 0.0018 0.0031 0.0364 0.0557 2.5105 2.5105
100 log(N) 0.0014 0.0023 0.0311 0.0475 3.0793 3.0793
25 2log(N) 0.0003 0.0008 0.0171 0.0288 0.4098 0.4098
50 2log(N) 0.0002 0.0003 0.0114 0.0184 0.5590 0.5590
70 2log(N) 0.0001 0.0002 0.0095 0.0152 0.6536 0.6536
100 2log(N) 0.0001 0.0002 0.0081 0.0127 0.8027 0.8027
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Table 2: Simulation results for Design 1. MLE refers to the Logit maximum-likelihood estimator, BC refers to the analytical bias-correction estimates, and PD
refers to the conditional maximum-likelihood method proposed in this paper.

Mean Bias Median Bias Size t-test RMSE

N CN MLE BC PD MLE BC PD MLE BC PD MLE BC PD

25 0 0.1232 0.0273 -0.0235 0.1218 0.0259 -0.0051 0.0400 0.0240 0.0280 0.6053 0.5421 0.5996
50 0 0.0482 0.0050 0.0014 0.0562 0.0126 0.0046 0.0750 0.0480 0.0340 0.3024 0.2862 0.2750
70 0 0.0300 -0.0001 0.0047 0.0243 -0.0056 0.0069 0.0540 0.0470 0.0540 0.2088 0.2005 0.2004
100 0 0.0240 0.0032 0.0027 0.0210 0.0003 0.0012 0.0600 0.0490 0.0560 0.1391 0.1342 0.1381
25 log(log(N)) 0.1258 0.0187 -0.0068 0.1425 0.0347 -0.0298 0.0530 0.0300 0.0290 0.7842 0.6995 0.7673
50 log(log(N)) 0.0482 0.0002 0.0147 0.0508 0.0027 0.0139 0.0660 0.0550 0.0380 0.3994 0.3780 0.3670
70 log(log(N)) 0.0228 -0.0103 -0.0112 0.0211 -0.0114 -0.0068 0.0600 0.0420 0.0380 0.2778 0.2678 0.2611
100 log(log(N)) 0.0251 0.0019 -0.0030 0.0198 -0.0035 0.0003 0.0590 0.0470 0.0430 0.1932 0.1872 0.1930

25 log(N)1/2 0.1257 0.0088 0.0339 0.1249 0.0087 0.0152 0.0560 0.0290 0.0230 1.0054 0.8933 0.9238

50 log(N)1/2 0.0557 0.0021 -0.0060 0.0644 0.0118 -0.0107 0.0600 0.0450 0.0480 0.4780 0.4503 0.4595

70 log(N)1/2 0.0359 -0.0016 0.0020 0.0380 0.0003 0.0085 0.0430 0.0350 0.0500 0.3286 0.3145 0.3244

100 log(N)1/2 0.0362 0.0099 -0.0044 0.0407 0.0148 -0.0066 0.0550 0.0470 0.0550 0.2328 0.2242 0.2344
25 log(N) 0.2036 0.0668 0.0030 0.1769 0.0517 0.0739 0.0780 0.0440 0.0180 1.8694 1.6546 1.7137
50 log(N) 0.0896 0.0261 0.0376 0.0694 0.0081 0.0526 0.0710 0.0520 0.0280 0.8845 0.8284 0.7629
70 log(N) 0.0937 0.0466 -0.0192 0.0809 0.0336 -0.0103 0.0610 0.0500 0.0340 0.6434 0.6102 0.5820
100 log(N) 0.0610 0.0276 0.0101 0.0606 0.0286 0.0105 0.0540 0.0490 0.0460 0.4380 0.4205 0.4351
25 2log(N) NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
50 2log(N) 0.2178 0.1468 -0.0176 0.1904 0.1322 0.0753 0.0620 0.0440 0.0220 2.2601 2.1286 2.2657
70 2log(N) 0.1444 0.0973 0.0050 0.1578 0.1051 -0.0050 0.0640 0.0490 0.0250 1.4514 1.3892 1.3792
100 2log(N) 0.0485 0.0177 -0.0056 0.0886 0.0574 0.0082 0.0570 0.0490 0.0290 0.9786 0.9490 0.9352
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Table 1 shows the network statistics obtained from the simulated data. The results show

that, as expected, as the value of the parameter CN increases, the percentage of informative

quadruples and the percentage of links and averages in and out-degree decrease. Overall, this

indicates that the larger the CN , the sparser is the underlying network. Finally, the values of

the calculated pN and qN are a good approximation of the average percentage of informative

quadruples and links in the network when the network is sparser.

Table 2 shows the results obtained with the logit maximum-likelihood estimator (MLE), the

bias correction method (BC), and the method proposed in this paper (PD). Both in terms of the

mean and the median biases, when CN = log(N) or CN = 2log(N), the MLE performs poorly

for any sample size (when the network is denser, the MLE mostly performs poorly when N=25 or

50). While the BC estimator reduces part of the biases, it is clear that the PD is more effective at

reducing the bias, especially in small sample sizes. Note, however, that when N = 25, there are

no available estimates since the number of informative quadruples for the likelihood (for the PD

estimator) and the number of units displaying variation in the outcomes (for the BC estimator)

is minimal.

In terms of the size of the t-test, surprisingly, the MLE shows the correct size throughout

the specifications. However, these results are misleading due to the sizeable bias seen in denser

specifications. Concerning the PD estimator, in general, the estimated variance is somewhat

overestimated, a finding also seen in Jochmans (2018).

Moreover, in the following, I deviate from the standard specifications for CN such that it is

possible to have a better comparison between the two methods. Namely, I vary the constant

CN for different sample sizes indicated by the number of nodes N such that the number of

informative quadruples for the Charbonneau (2017) estimator remains constant. Tables 3 shows

the networks statistics such as the percentage of informative quadruples to the likelihood, the

average in and out-degree, and the number of informative quadruples, that as expected, remains

constant across the configurations. Table 4 show the mean bias, median bias, size of the t-test

and the RMSE obtained with the simulations.
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The simulation exercise shows that when increasing both N and CN , while the number of

quadruples contributing to the likelihood function of the Pairwise Differencing (PD) estimator

remains reasonably constant, the sparsity in the network increases (as it is reflected by the average

percentage links). Note that, as expected from before, the mean bias of the PD estimates are

generally smaller in magnitude than that of the Bias Corrected (BC) estimator for the sparser

settings. This difference is even bigger in magnitude when considering the Median Bias.
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Table 3: Network statistics for alternative simulated data for Design 1. Based on 1000 Monte Carlo replications. Percentage quadruples refer to the average
percentage of informative quadruples for the likelihood across the simulations, and percentage links refers to the average percentage of links in the network across
the simulations.

N CN percentage
quadruples

pN percentage
links

qN average In-
degree

average.
Out-degree

# informative
quadruples

25 3.65 0.00301 0.00590 0.04843 0.07684 1.16220 1.16220 228.78
50 7.75 0.00016 0.00035 0.01155 0.01868 0.56614 0.56614 228.19
70 10.85 0.00004 0.00009 0.00593 0.00964 0.40920 0.40920 228.47
100 15.65 0.00001 0.00002 0.00288 0.00468 0.28499 0.28499 225.74

Table 4: Alternative simulation results for Design 1. MLE refers to the Logit maximum-likelihood estimator, BC refers to the analytical bias-correction estimates,
and PD refers to the conditional maximum-likelihood method proposed in this paper.

Mean Bias Median Bias Size t-test RMSE

N CN MLE BC PD MLE BC PD MLE BC PD MLE BC PD

25 3.65 0.1961 0.0568 -0.0205 0.2643 0.1347 0.0220 0.0680 0.0350 0.0150 2.4219 2.1588 1.9873
50 7.75 0.1966 0.1268 -0.0953 0.1812 0.1211 -0.0015 0.0660 0.0460 0.0260 2.2303 2.1006 2.2124
70 10.85 0.1490 0.1010 -0.0875 0.2146 0.1737 -0.0600 0.0760 0.0640 0.0210 2.3345 2.2377 1.8724
100 15.65 0.2652 0.2282 -0.0264 0.2910 0.2571 0.1159 0.0590 0.0520 0.0230 2.2051 2.1407 2.1044
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5.2. Monte Carlo simulations for the entire distribution

To analyze the finite sample properties of both DR estimators, I follow the same Monte

Carlo simulations setting as Chernozhukov et al. (2020), which is calibrated to the empirical

application in the following Section for gravity models of international trade. More specifically,

I set the outcome to be generated by a censored logistic process

ysij = max
{
x′ij β̂ + α̂i + γ̂j + σ̂Λ−1

(
usij
)
/σL, 0

}
, (i, j) ∈ D

where D = {(i, j) : 1 ≤ i, j ≤ 157, i ̸= j}, xij is the value of the covariates for the observational

unit (i, j) in the trade data set, ysij is the level of exports from country i to j, σL = π/
√
3,

the standard deviation of the logistic distribution, and
(
β̂, α̂1, . . . , α̂I , γ̂1, . . . , γ̂J , σ̂

)
are Tobit

fixed effect estimates of the parameters in the trade data set with lower censoring point at

zero. Moreover, I set the errors to be independently drawn from a uniform distribution U(0, 1).

For simplicity, in this simulation exercise, I consider only one covariate, the log of the distance

between countries.

Importantly, it can be shown that the conditional distribution of the dependent variable ysij

is equivalent to a DR model as defined before, where:

β(y) = σL

(
e1y − β̂

)
/σ̂, αi(y) = −σLα̂i/σ̂, and γj(y) = −σLγ̂j/σ̂

with e1 the unit vector of dimension dx with a one in the first component. The results are based

on 250 simulations for now due to computational limitations (it is to be expanded in next versions

of this paper).

Figure 3 shows the absolute bias, absolute median bias, and RMSE obtained with a naive

fixed effects logit estimation (Uncorrected Logit UL), the Bias Correction (BC) method of Cher-

nozhukov et al. (2020) and with the proposed Pairwise Differences (PD) estimator in this paper.

Both BC and PD reduce the bias significantly in finite samples compared to the UL estimates.

However, as expected, in the extreme quantiles, the BC method does not seem to fully correct
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Figure 3: Simulation results for the DR coefficients of log distance. Based on 250 Monte Carlo simulations.

for the bias (both mean and median), while the PD biases do not increase relative to the other

quantiles. Moreover, as expected, the RMSE for the UL is the biggest due to the high magnitude

of the biases. Also, since the PD estimator is not efficient, its RMSE is larger than that of the

BC.

Figure 3 also displays the percentage of informative quadruples to the likelihood of the PD

estimator. Naturally, as the quantiles increase, the percentage and number of quadruples decrease

significantly. However, at the 99% quantile, there are still about 10000 informative quadruples,

which renders the PD estimation robust at the tail of the outcome distribution.

6. Application to gravity models of international trade

One key feature of models for bilateral international trade (and many other applications)

is that the outcome of interest, which in this case is the volume of trade, is bounded below

at zero and contains many zeros. Another important aspect in such models is the inclusion of
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importer and exporter country effects, which, in the international trade literature, are known as

the multilateral resistance terms (Anderson and Van Wincoop 2003), i.e., the barriers to trade

that each country faces with all its trading partners that are not observable.

Despite the abundance of datasets and models with this feature, estimating models reflecting

such a structure in the outcome of interest remains challenging, especially when there are very

few nonzero observations, such that the network is sparse at the outcome level.

Remark 3. Notably, this notion of sparsity differs from the one mentioned in the previous

Sections of this paper. Here, I refer to the degree of sparsity as the frequency of zero observed

outcomes (trade flows in this application) relative to the amount of strictly positive outcomes.

Earlier in this paper, the degree of sparsity referred to the frequency of zeros (or ones) in a

binary variable obtained after constructing the variables ỹij for each threshold in the support of

the outcome variable. I denote the former form of sparsity as first-degree sparsity, and the latter

as second-degree sparsity.

To illustrate the challenges that arise with the first-degree sparsity, consider the following

two-way fixed effects model with a possible selection bias:

y1,ij = y2,ij
(
x′
1,ijβ1,0 + αi + γj + uij

)
(7)

y2,ij = 1
(
y∗2,ij > 0

)
(8)

y∗2,ij = x′
2,ijβ

∗
2,0 + ξ∗i + ζ∗j + η∗ij , (9)

(i = 1, . . . N ; j = 1, . . . N, i ̸= j)

where αi, γj , ξ
∗
i and ζ∗j are individual fixed effects. Moreover, pairs (i, j) first decide whether

to form a link, in which occasion y2,ij = 1 and then a nonzero outcome y1,ij is observed, and

zero otherwise. Therefore, this model generates outcomes y1,ij with potentially many zeros. The

unobservable individual-specific effects might arbitrarily depend on the observable explanatory

variables in both equations. Thus, they are considered nuisance parameters to be estimated in a

semi-parametric model. The errors in the equations (uij and ηij) might be correlated, in which
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case sample selectivity should be addressed. In the gravity model case, the equations above are

obtained after a log-linearization of the original model, which has a multiplicative form.

Currently, there are two strands in the literature of gravity equations on how to take into

account the zeros: (i) modeling through a sample selection model (Helpman et al. 2008); or (ii)

considering the model in its multiplicative form through a Poisson pseudo maximum likelihood

(PPML) estimator (Silva and Tenreyro 2006). However, due to the introduction of the two-way

fixed effects and the non-linearities in both models, both estimations suffer from the incidental

parameter problem. While bias-correction methods have been proposed for both the PPML

(Fernández-Val and Weidner 2016)9 and the first stage of the sample selection model (Dzem-

ski (2019) and Yan et al. (2019)), the estimates are consistent and valid inference is available

only under dense networks, as mentioned before. The first case refers to the concept of first-

degree sparsity, and the second case refers to second-degree sparsity. Notice that the method

of Charbonneau (2017) can be employed for the first stage of the sample selection, providing

asymptotically unbiased estimates even when the network is sparse. However, this method does

not provide estimates of the fixed effects. Hence, the estimation of the second stage is infeasible.

Therefore, the DR approach proposed in this paper fills this gap in the literature, displaying

advantages compared to the previously available methods. Namely, (i) it allows for zero out-

comes and other censoring points by relying on approximating the conditional distribution of

the outcomes pointwise at given thresholds and avoiding strong assumptions on how the zeros

are generated, (ii) it allows for the presence of many zeros being suitable for sparse networks

(in both notions of sparsity), and (iii) it can accommodate conditional heteroskedasticity, which

is also a topic of discussion in the estimation of gravity models for international trade. As a

by-product, this approach also delivers conclusions concerning the possible heterogeneity of the

effects of observable trade barriers (covariates) across the distribution of trade flows.

I consider the estimation of gravity equations for bilateral trade between countries, using

the same data as Helpman et al. (2008), Jochmans (2018) and Chernozhukov et al. (2020). It

9This estimator accommodates both binary choice models as well as other non-linear models, encompassing a
wide class of models.
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Mean Std. Dev.

Trade 0.45 0.50
Trade volume 84.54 1,082,219
Log distance 4.18 0.78
Legal 0.37 0.48
Language 0.29 0.45
Religion 0.17 0.25
Border 0.02 0.13
Currency 0.01 0.09
FTA 0.01 0.08
Colony 0.01 0.10

Country pairs

Table 5: Descriptive statistics. Source: Helpman et al. (2008).

contains information on bilateral trade flows and covariates for 157 countries in 1986 (Congo is

excluded due to the lack of variation in the dependent variable since it does not export to any

other country in 1986). i and j index each country as an exporter and an importer. There are

no trade flows for 55% of the country pairs in the dataset, which, together with the fact that the

volume of trade variable exhibits a much larger standard deviation than its mean, as indicated

in Table 5, indicates the presence of a very heavy upper tail in the distribution. This feature,

combined with the arguments highlighted previously, makes DR methods especially well-suited

for this application on robustness grounds.

The outcome yij is the volume of trade in thousands of constant 2000 U.S. dollars from

country i to country j. The bilateral trade flows data are obtained from Feenstra’s “World

Trade Flows, 1970-1992”, and it was transformed to constant 2000 U.S. dollars using the U.S.

CPI by Helpman et al. (2008). The covariates xij include the following determinants of bilateral

trade flows:

1. Distance: the logarithm of the distance in kilometers between the capitals of exporter i

and importer j.

2. Colonial ties: a binary variable that takes the value one if country i colonized country j
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(or vice-versa), and zero otherwise.

3. Currency union: a binary variable that takes value one if countries i and j use the same

currency or if the currencies were interchangeable at a 1:1 exchange rate for an extended

period of time, and zero otherwise.

4. Regional free trade area (FTA): a binary variable that takes value one if the countries i

and j belong to a common regional trade agreement and zero otherwise.

5. Border: a binary variable that equals one if the countries i and j are neighbors and zero

otherwise.

6. Legal system: a binary variable that takes value one if the countries i and j share the same

legal origin, and zero otherwise.

7. Language: a binary variable that takes value one if the countries i and j share the same

language, and zero otherwise.

8. Religion: index of common religion constructed as (% Protestants in country i × % Protes-

tants in country j) + (% Catholics in country i × % Catholics in country j) + (% Muslims

in country i × % Muslims in country j).

The variables distance, colonial ties, border, legal system, language, and religion were con-

structed by Helpman et al. (2008) using the CIA’s World Factbook; and the variables currency

union and FTA were constructed using data from Rose (2000) and Glick and Rose (2002).

Figure 4 shows estimates and 95% pointwise confidence intervals for the DR coefficients of

log distance plotted against the quantile indexes of the trade volume. I plot three different

curves: one obtained by using bias-corrected (BC) fixed effects estimates for each considered

quantile (the approach of Chernozhukov et al. (2020)); one obtained by employing the method

proposed in this paper, using the pairwise differencing (PD) of outcomes and regressors; and one

obtained when using the uncorrected FE logit estimation at each quantile. The x-axis starts

at .54, the maximum quantile index corresponding to zero trade volume. The region of interest
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Figure 4: Estimates and 95% pointwise confidence intervals for the DR-coefficients of log distance.

Y corresponds to the interval between zero and the 0.95-quantile of the trade volume. Note

that the sign of the effect in terms of trade volume, yij , is the opposite of the sign of the DR

coefficient. Figure 5 shows the analogous estimates for the DR coefficients of the legal system.

As in Chernozhukov et al. (2020), notice that the difference between the uncorrected and the

bias-corrected estimates is of the same order as the magnitude of the width of the confidence

intervals for log distance. Moreover, the largest estimated bias when comparing the two and

also when comparing with the pairwise difference estimator lies on the upper quantiles of trade,

where the constructed binary variables have less variation. However, our estimates suggest an

even higher bias in magnitude across the entire distribution. Interestingly, when compared to

the BC estimates, the difference between the two estimates (PD and BC) seems to be constant

across the distribution. Notably, the PD estimates suggest that the effect of distance across

the distribution is significant but of a smaller magnitude. A similar conclusion is drawn in

general for the coefficients for the legal system. An exception is at the upper quantiles, where

the PD estimates suggest a smaller bias relative to the BC estimates. Finally, as expected, the

confidence intervals around the proposed estimator are wider than that of the BC estimator since

this estimator is not as efficient as standard MLE.

Even though it would be desirable to compute counterfactual effects for the estimated distri-
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Figure 5: Estimates and 95% pointwise confidence intervals for the DR-coefficients of legal.

bution function (or quantile functions), a drawback of this approach is that such an estimation

is infeasible. This occurs since there are no available estimates for the fixed effects or average

marginal effects in general (for which the estimated fixed effects are an input), as opposed to the

bias correction method of Chernozhukov et al. (2020). However, there is a further interpretation

for the estimated coefficients in terms of the derivatives of the conditional quantiles under certain

conditions.

6.1. Relation to the conditional quantile function

The conditional distribution of yij given the covariates and the unobserved effects can be

represented by either the conditional distribution function or the conditional quantile function.

While these equivalent representations correspond to two alternative approaches for estimation,

there are relevant links between DR and quantile regression (QR) estimates, as shown by Koenker

et al. (2013). In particular, following results from Chernozhukov et al. (2020) for our framework,

it is possible to show that the common parameters of the model are related to the derivatives of

the conditional quantiles under certain conditions.

When yij is continuous, the model given by Equation 1 has the representation as an implicit
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nonseparable model by the probability integral transform:

Λ
(
x′
ijβ (yij) + α (νi, yij) + γ (ωj , yij)

)
= uij , uij | xij ,νi,ωj ∼ U(0, 1). (10)

where, as commonly seen in DR or QR approaches, uij represents the unobserved ranking of

the observation yij in the conditional distribution. Let Q (u|xij ,νi,ωj) be the u-quantile of yij

conditional on (xij ,νi,ωj). This quantile function can be defined as:

Q (u | xij ,νi,ωj) = inf
{
y ∈ Y : Fyij (y | xij ,νi,ωj) ≥ u

}
∧ sup{y ∈ Y}. (11)

It can be shown that if (i) Fyij (y | xij ,νi,ωj) is strictly increasing in the support of yij ; (ii)

∂Λ(z)/∂z > 0 for all y in the support of yij ; and (iii) Q (u | xij ,νi,ωj) is differentiable, then the

DR coefficients are proportional to (minus) derivatives of the conditional quantile function, and

ratios of the DR coefficients correspond to ratios of derivatives:

βℓ(y)

βk(y)

∣∣∣∣
y=Q(u|xij ,νi,ωj)

=
∂xℓ

ij
Q (u | xij ,νi,ωj)

∂xk
ij
Q (u | xij ,νi,ωj)

, ℓ, k = 1, . . . , dx (12)

Therefore, based on the figures above for the estimated coefficients, it is possible to infer that

the marginal effects of distance on the quantile functions are larger in magnitude than that of

the legal variable.

Finally, there is an ongoing debate in the international trade literature regarding the homo-

geneity of trade elasticities, which ultimately affects welfare gains from trade (Arkolakis et al.

(2012), Melitz and Redding (2015), Chen and Novy (2022)). The method presented in this pa-

per provides a straightforward way (provided the confidence bands for the estimates) to test the

heterogeneity of trade elasticities across different quantiles of trade distribution, proving to be

of empirical and theoretical importance in the literature.
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7. Conclusion

A novel method for estimating distribution regressions in a network setting is introduced. To

accommodate the network structure, it envolves a semiparametric approach, treating two-way

unit-specific effects as fixed parameters, and I address the incidental parameter problem using

a conditional maximum-likelihood approach initially proposed for network formation models

(Charbonneau (2017), Jochmans (2018)). The proposed method provides consistent estimates

and robust inference pointwise, particularly for extremum quantiles of the distribution. This

approach fills a gap in the econometrics of network model literature by accommodating zero

outcomes and sparse networks without relying on strong assumptions regarding how the zero

outcomes are generated. Moreover, the empirical application demonstrates its practical relevance,

allowing, for instance, to test whether the elasticities of gravity models of international trade are

heterogeneous across thresholds. A current drawback of the proposed method is that estimates

of counterfactual distributions are infeasible. This is because the estimates of fixed effects are

unavailable, and the average (marginal) effects of network formation models remain set-identified

when the network is sparse - which is the case of the underlying network in the extreme quantiles

of the distribution of outcomes. Therefore, future research would involve obtaining estimates for

bounds on the partially identified average effects of network models.
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Appendix A. An introduction to Distribution Regression (DR)

In this section I present an introduction to the DR approach, following the initial proposal by

Foresi and Peracchi (1995), and further discussed in Peracchi (2002) and Koenker et al. (2013).

Consider the problem of estimating the conditional distribution of a random variable Y given a

vector of X covariates in a standard cross-sectional case. Note that the interest is not in merely

a few quantiles but in the entire conditional distribution, F (y|x).

It is proposed to select J distinct values −∞ < y1 < · · · < yJ < ∞ in the range of interest

of Y (which is related to the quantiles of the distribution of Y), and estimate J functions
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F1(x), . . . FJ(x), with Fj(x) = F (yj |x), j = 1, . . . J . It is argued that by suitably choosing J and

their position, one can get a reasonably accurate description of F (y|x).

If the conditional distribution of Y is continuous with support on the entire real line, then at

any point x in the support of X, the sequence of conditional distribution functions must satisfy:

0 < Fj(x) < 1, j = 1, . . . , J, (A.1)

0 < F1(x) < · · · < FJ(x) < 1. (A.2)

To impose the condition given by Equation A.1, it is suggested to not model Fj(x) directly, but

rather to estimate the log-odds ηj(x) = ln[Fj(x)/(1 − Fj(x))]. Then, given this estimate of the

ηj(x), one can estimate the conditional distribution at the threshold j by:

F̂j(x) =
exp η̂j(x)

1 + exp η̂j(x)
. (A.3)

Let H be the class of functions of x that are possible candidates for the log-odds ratio. Since the

random variable 1{Y ≤ yj} has a Bernoulli distribution with parameter Fj(x), by the definition

of the cumulative conditional distribution, we can define the best Kullback-Leibler approximation

η∗j (x) to ηj(x) in the class of functions H as the minimizer of K(η, ηj) = l(ηj)− l(η), with:

l(η) = E[1{Y ≤ yj}η(X)− ln(1 + exp η(X))] (A.4)

= E[Fj(X)η(X)− ln(1 + exp η(X))].

The first expectation is taken with respect to the joint distribution of (X,Y ), and the second

with respect to the marginal distribution of X. Therefore, the function η∗j maximizes l(η) over

the class H. If ηj ∈ H, then η∗j = ηj . Importantly, if X is a scalar random variable, and H is

the class of functions linear in x, then the best Kullback-Leibler approximation to ηj(x) is of a
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linear form η∗j (x) = γj + xδj , where (γj , δj) are such that the approximation error

Fj(X)−
expn∗

j (X)

1 + expn∗
j (X)

has mean zero and is uncorrelated with X. Therefore, η∗j can be estimated by maximizing the

sample log-likelihood:

L(η) = n−1
n∑

i=1

[1{Yi ≤ yj}η(Xi)− ln(1 + exp η(Xi))].

over the linear functions in the class H. Clearly, this is obtained by fitting J separate logistic

regressions, one for each binary random variable 1{Yi ≤ yj}, j = 1, . . . J . Alternative speci-

fications for the class of functions H, for instance, non-linear specifications, entails alternative

estimation methods. One caveat of this approach is that while it satisfies the condition given by

Equation A.1, by modeling the log-odds ratio, it does not guarantee the monotonicity condition

given by Equation A.2.

Appendix B. The incidental parameter problem

As highlighted by Arellano and Hahn (2007) in a standard panel data regression with one

way fixed effects and dimensions i = 1, . . . N and t = 1, . . . T , if T is fixed and N → ∞, there

will be an estimation error in the estimates of the fixed effects, as only a finite number T of

observations are available to estimate each fixed effect. As we allow for the fixed effects to be

correlated with the exogenous regressors (and its distribution is left unspecified), this estimation

error contaminates the estimates of the other parameters as well, as they are not informationally

orthogonal. For large enough T , this bias should be small. However, even under T → ∞ and

N → ∞, the fixed effects estimator will be asymptotically biased, leading to incorrect inference

over the parameters and the average partial effects.

The same argument holds for the present framework of a dyadic regression with two-way fixed

effects. In our panel data model, we have two dimensions: i = 1, ..N, j = 1, . . . N . However,
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both the dimensions grow at rate N . I will consider asymptotic results such that N → ∞.

Note as well that for each new country in the dataset, the number of observations is increased

by 2(N − 1). Moreover, for each fixed effect in Equation 2 there are (N − 1) observations

available for their estimation. I will now use results shown by Fernández-Val and Weidner

(2016) to demonstrate how the incidental parameter problem arises in this framework, delivering

consistent but asymptotic biased estimators, keeping in mind that as N → ∞ both dimensions

i and j go to infinity and also the number of observations N(N − 1) go to infinity.

Given the dataset of N(N − 1) observations

{(
ỹij , x

′
ij

)′
: 1 ≤ i ≤ N, 1 ≤ j ≤ N, i ̸= j

}
with

ỹij = 1

(
ỹ∗ij > 0

)
, we have that ỹij is generated by the process:

ỹij | xij , αy, γy, βy ∼ fY (· | xij , αy, γy, βy)

where: αy = (α1,y, . . . αN,y) , γy = (γ1,y, . . . γN,y) , fY is a known probability function and αi,y, γj,y

are the unobserved fixed effects. I assume for simplicity a single regressorn and a single βy. Note

here that this approach is semi-parametric in the sense that is does not specify the distribution

of the fixed effects or their relationship with the explanatory variables.

We can further model the conditional distribution of y2,ij using a single-index specification

with fixed effects, since it is a binary response model:

fY (ỹij | xij , αy, γy, βy) = F
(
x′ijβy + αi,y + γj,y

)ỹij
×
[
1− F

(
x′ijβy + αi,y + γj,y

)]1−ỹij ,

where, clearly ỹij ∈ {0, 1} and F is a cumulative distribution function, defined to be a standard

logistic.

I can then collect all the fixed effects to be estimated in the vector ωNN,y = (α1,y, . . . αN,y, γ1,y, . . . γN,y)
′,

which can be seen as a nuisance parameter vector. Then, the true values of the parameters, de-

noted by βy,0 and ωNN,y,0 are the solution to the population conditional maximum likelihood
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maximization:

max
(βy ,ωNN,y)∈Rdim βy+dimωNN,y

Eω [L (βy, ωNN,y)]

with

L (βy, ωNN,y)

= (N(N − 1))−1


N∑
i=1

∑
j ̸=i

log fY (ỹij | xij , αy, γy, βy)− b
(
ι′NNωNN,y

)2
/2


where Eω denotes the expectation with respect to the distribution of the data conditional on

the unobserved effects and strictly exogenous variables, b > 0 is an arbitrary constant, ιNN =

(1′N ,−1′N )′ and 1N denotes a vector of ones of dimension N .

The second term of L relates to a penalty that imposes a normalization to identify the fixed

effects in models with two-way fixed effects that enter in the log-likelihood function as αi,y+γj,y.

To be more specific, in this case, adding a constant to all αi,y and subtracting the same constant

from all γj,y would not change αi,y + γj,y. Thus, without this normalization, the parameters αi,y

and γj,y are not identifiable.

To estimate the parameters, we solve the sample analogue of the following equation:

max
(βy ,ωNN,y)∈Rdim βy+dimωNN,y

L (βy, ωNN,y)

In order to analyze the statistical properties of βy, we first concentrate out the nuisance param-

eters ωNN,y, such that for given βy, the optimal ω̂NN,y (βy) is:

ω̂NN,y (βy) = argmax
ωNN,y∈RdimωNN,y L (βy, ωNN,y)

Thus, the fixed effects estimator of βy and ωNN,y are, by plugging in the previous expression for

ω̂NN,y (βy) :

β̂y = argmaxβy∈Rdim βy L (βy, ω̂NN,y (βy)) (B.1)

ω̂NN,y (βy) = ω̂NN,y

(
β̂y

)
(B.2)
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The source of the problem is that the dimension of the nuisance parameters ωNN,y increases

with the sample size under asymptotic approximations where N → ∞. To further describe the

incidental parameter problem, denote:

β̄y = argmaxβy∈Rdim βy Eω [L (βy, ω̂NN,y (βy))]

Using an asymptotic expansion for smooth likelihoods under appropriate regularity conditions,

provided by Fernández-Val and Weidner (2016), we have that:

β̄y = βy,0 +
B̄∞

(N − 1)
+

D̄∞
(N − 1)

+ oP
(
(N − 1)−1

)
(B.3)

For some constants B̄∞ and D̄∞. The derivation for this expression can be found in the Appendix

of Fernández-Val and Weidner (2016). As explained by the authors, the expansion is obtained

by first taking a firstorder Taylor expansion of the Equation B.1 around the true value βy,0,

as it is usually done to obtain the asymptotic properties of such estimator. Then, one should

additionally take a second-order Taylor expansion of the obtained term
∂L(βy,0,ω̂NN )

∂βy
around the

true values of the nuisance terms. Intuitively, this second step demonstrates how the estimates of

the fixed effects affect the estimates of the structural parameter βy. To obtain the exact form of

the expressions B̄∞ and D̄∞ a quite involved derivation is needed. However, this is not the focus

of our study, since we show later that there are other possibilities to correct for the asymptotic

bias generated by these terms other than deriving the biases themselves.

Moreover, by the properties of the maximum likelihood estimator we have that, under regu-

larity conditions: √
N(N − 1)

(
β̂y − β̄y

)
d→ N

(
0, V̄B∞

)
For some V̄B∞. By substituting the expression for βy,0 obtained in Equation B.3, we obtain that,
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by Slutsky’s theorem:

√
N(N − 1)

(
β̂y − βy,0

)
=
√
N(N − 1)

(
β̂y − β̄y

)
+
√
N(N − 1)

(
B̄∞

(N − 1)
+

D̄∞
(N − 1)

+ oP
(
(N − 1)−1

))
d→ N

(
B̄∞ + D̄∞, V̄B∞

)
We can see from Equation B.3 that, as N → ∞, β̂y

p→ βy,0 (βy,0 being the true value of the

parameter), thus, the estimates of βy,0 are consistent. However, from the equation above we see

that the estimates converge to a distribution that is not centered at zero, which leads to incorrect

asymptotic confidence intervals. This demonstrates the incidental parameters problem, that boils

down to an asymptotic bias in the estimates of βy,0. This asymptotic bias arises as the order of

the bias is higher than the inverse of the sample size because of the small rate of convergence of

the fixed effects.

Appendix C. Sufficient statistics

In this section, I provide a proof that
∑N

j=1 ỹij and
∑N

i=1 ỹij are indeed the sufficient statistics

for αi,y and γj,y. In the following, for the sake of simplification of notation, I omit the subscript y

that denotes the threshold of the outcome variable. Denoting by Ỹ the vector of all observations

(ỹ11, . . . ỹIJ); r the vector of sums of rows (r1, . . . , rI) where ri =
∑J

j=1 ỹij ; c the vector of sums

of columsn (c1, . . . , cJ) where cj =
∑I

i=1 ỹij ; and x, α and γ the vectors of covariates and fixed

effects, we have that:

Pr[Ỹ | r, c,α,γ,x;βy] =
Pr[Ỹ | α,γ,x;βy]

Pr[r, c | α,γ,x;βy]
,

with Pr[r, c | α,γ,x;βy] =
∑

¯̃Y ∈Q Pr[Ỹ = ¯̃Y | α,γ,x;βy], where Q is the set of all possible

combinarions of ỹij in Ỹ such that the sum of the rows is given by r and the sum of columns by

c.

43



Following the proposed model for the constructed binary variables ỹij :

ỹij = 1
{
x′
ijβy + αi + γj + εij ≥ 0

}
i = 1, . . . , I, j = 1, . . . , J

we have that:

Pr[ỹij | xij , αi, γj ] =
exp(x′

ijβy + αi + γj)
ỹij

1 + exp(x′
ijβy + αi + γj)

.

Therefore, the joint probability of all the outcomes, conditional on
∑N

j=1 yij and
∑N

i=1 yij is:

Pr[Ỹ | α,γ,x;βy] =
∏
i ̸=j

Pr[ỹij | xij , αi, γj ;βy]

=
exp(

∑
i ̸=j ỹijx

′
ijβy +

∑
i ̸=j ỹij(αi + γj))∏

i ̸=j [1 + exp(x′
ijβy + αi + γj)]

=
exp(

∑
i ̸=j ỹijx

′
ijβy) exp(

∑I
i=1 αi

∑J
j=1 ỹij) exp(

∑J
j=1 γj

∑I
i=1 ỹij)∏

i ̸=j [1 + exp(x′
ijβy + αi + γj)]

And analogously for Pr[ ¯̃Y | α,γ,x;βy]. Then, we can write:

Pr[Ỹ | α,γ,x;βy]∑
¯̃Y ∈Q Pr[ ¯̃Y | α,γ,x;βy]

=
exp(

∑
i ̸=j ỹijx

′
ijβy) exp(

∑I
i=1 αi

∑J
j=1 ỹij) exp(

∑J
j=1 γj

∑I
i=1 ỹij)∑

¯̃Y ∈Q exp(
∑

i ̸=j
¯̃yijx′

ijβy) exp(
∑I

i=1 αi
∑J

j=1
¯̃yij) exp(

∑J
j=1 γj

∑I
i=1

¯̃yij)

Finally, independently of which set in Q we consider, we have that, by the construction of

the set,
∑I

i=1
¯̃yij =

∑I
i=1 ỹij and

∑J
j=1

¯̃yij =
∑J

j=1 ỹij , such that:

Pr[Ỹ | α,γ,x;βy]∑
¯̃Y ∈Q Pr[ ¯̃Y | α,γ,x;βy]

=
exp(

∑
i ̸=j ỹijx

′
ijβy)∑

¯̃Y ∈Q exp(
∑

i ̸=j
¯̃yijx′

ijβy)

which does not depend on the fixed effects, rendering the result.

Appendix D. Identification

A loose intuition for the identification of the common parameters is analogous to that of

Graham (2017) for the undirected case. The heterogeneity parameters (fixed effects) account

for the in-degree and out-degree distributions of the network (the quantity of one’s for a given

44



node when the node is a sender or a receiver). Therefore, the precise location of the ones

(or links) is driven by the variation provided by the covariates and the common parameters

(x′
ijβy). Thus, conditioning on the set {ỹij + ỹik = 1, ỹlj + ỹlk = 1, ỹij + ỹlk = 1} provides the

ground for an estimator that is based on the relative probability of different types of subgraphs

configurations with identical degree sequences, giving the necessary variation to identify the

common parameters.

For instance, assuming that the dashed wirings are not present in the above Subgraphs 1 and

2 in Figure 1 provide the same contribution of the unobserved heterogeneity to the likelihood,

such that the conditional frequency to which each is observed depends only on the variation given

by the covariates associated with each. In other words, in conditioning on the degree sequences

of tetrads (since they are the same in both subgraphs), the only variation is the location of

the links. This intuition aligns with the fact that the sums across each dimension are sufficient

statistics for the fixed effects. At the same time, the conditioning events guarantee that for a

node there is variation in the outcomes such that the common parameters can be identified. This

feature cannot be seen in Figure 2, where Subgraph 2 is not informative to the likelihood, and

the outcomes for all nodes do not present variation (i.e., a node is always sending a link or never

sending a link in each Subgraph).

Appendix E. Proofs

Appendix E.1. Proof of Theorem 1

The derivation of this Theorem follows very closely that of Jochmans (2018), including only

some minor modifications and more details. Using Lemma 2.2. in Newey and McFadden (1994),

we can show that the limit of objective function

lim
N−→∞

(Mnpn)
−1E(Ln(βy))

has a unique maximizer βy,0 on Θ. We start by showing that the partial-likelihood contributions

are bounded.
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The partial-likelihood contributions are given by:

lσ(βy) = 1{zσ = 1} log(Λ(r′σβy)) + 1{zσ = −1} log(1− Λ(r′σβy)).

And thus:

|lσ(βy)| ≤| log(Λ(r′σβy))|+| log(−Λ(r′σβy))|.

From a mean-value expansion around βy = 0:

| log(Λ(r′σβy))| =| log(Λ(0)) + λ(r′σβ̃y)r
′
σβy|

≤| log(Λ(0))|+ C(1+|r′σβ̃y|)|r′σβy|

≤| log(Λ(0))|+ C(1 + ∥rσ∥∥βy∥)∥rσ∥∥βy∥,

and, since 1− Λ(r′σβy) = Λ(−r′σβy) and ỹ is bounded:

|lσ(βy)| ≤ 2 [| log(Λ(0))|+ C(1 + ∥rσ∥∥βy∥)∥rσ∥∥βy∥] . (E.1)

The existence of second moments of rσ given by Assumption 4.4., implies that E[|lσ(βy|] is finite.

Together βy, Newey and McFadden (1994, Lemma 2.2) applies.

Because the limit of the objective function is concave, β̂y
p−→ βy,0 will follow from a pointwise

convergence in probability of (M∗
n)

−1Ln(βy), which is the normalized objective function, to

(Mnpn)
−1E(Ln(βy)), following Newey and McFadden (1994, Theorem 2.7).

By writing:

Ln(βy) =
∑

σ∈Mn

lσ(βy),

where lσ(βy) is the log-likelihood contribution of quadruple σ. Then, noticing that:

Ln(βy)

M∗
n

− E(Ln(βy))

E(M∗
n)

=

∑
σ∈Mn

lσ(βy)−E(lσ(βy))

E(M∗
n)

+

∑
σ∈Mn

lσ(βy)

E(M∗
n)

(
E(M∗

n)

M∗
n

− 1

)
,

it is sufficient to show that each of the terms in the RHS of this expression converges to zero in
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probability.

For the first term in the RHS, using Equation (E.1), because E(∥rσ∥2) is finite by Assumption

4.4, and Θ is compact, it follows that the variance of lσ(βy) exists and is uniformly bounded in

σ. Then, by Chebyshev’s inequality, it holds that for any ϵ > 0:

Pr

(∣∣∣∣
∑

σ∈Mn
lσ(βy)−E(lσ(βy))

E(M∗
n)

∣∣∣∣ > ϵ

)
≤ 1

ϵ2

E

(∣∣∑
σ∈Mn

lσ(βy)−E(lσ(βy))
∣∣2)

E(M∗
n)

2
,

for each βy ∈ Θ. Also,

E

∣∣∣∣∣ ∑
σ∈Mn

lσ(βy)−E(lσ(βy))

∣∣∣∣∣
2
 = E

( ∑
σ∈Mn

lσ(βy)−E(lσ(βy))

) ∑
σ′∈Mn

lσ′(βy)−E(lσ′(βy))

 .

Notice that a pair of quadruples σ = σ{i, l; j, k} and σ′ = σ{i′, l′; j′, k′} only contributes to the

covariance if they share at least one node in common, i.e., a pair of quadruples with only distinct

nodes are independent by Assumption 4.1.

More specifically, the product above contains O(N8) terms. Consider σ = σ{i, l; j, k} and

σ{i′, l′; j′, k′} having indices in common, and therefore, having dependence and contributing to

the covariance. If they share the index i = i′, there are
(
N−1
2

)
choices for l and l′ to be distinct,

and
(
N−2
4

)
choices of j, j′, k, k′ to be distinct. Since there are N different combinations for i = i′,

the number of quadruples that share at least one node in common is of the order O(N7) (given by

the fact that the quadruples that share two or more nodes in common are of smaller order than

the ones sharing one node in common). This also implies that for a quadruple σ = σ{i, l; j, k}

there are O(N3) other quadruples sharing at least one index. By writing 1{σ∩σ′ ̸= ∅} to indicate
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the quadruples that share common indices:

E

( ∑
σ∈Mn

lσ(βy)−E(lσ(βy))

) ∑
σ′∈Mn

lσ′(βy)−E(lσ′(βy))


=
∑

σ∈Mn

∑
σ′∈Mn

E ((lσ(βy)−E(lσ(βy))) (lσ′(βy)−E(lσ′(βy))))

=
∑

σ∈Mn

∑
σ′∈Mn

1{σ ∩ σ′ ̸= ∅}E ((lσ(βy)−E(lσ(βy))) (lσ′(βy)−E(lσ′(βy))))

≤
∑

σ∈Mn

∑
σ′∈Mn

1{σ ∩ σ′ ̸= ∅}
√
Var(lσ(βy))−E(lσ(βy))

√
Var(lσ′(βy))−E(lσ′(βy))

= O(N3Mnpn), (E.2)

where the inequality follows from the fact that the variance is bounded, and the last equality

follows from the fact that, in expectation, there are Mnpn informative quadruples, and O(N3)

quadruples in σ′ sharing at least one index with σ.

Moreover, as E(M∗
n) = Mnpn and Mn = O(N4), we find that:

E

(∣∣∑
σ∈Mn

lσ(βy)−E(lσ(βy))
∣∣2)

E(M∗
n)

2
= O

(
1

Npn

)
,

which converges to zero by Assumption 4.4, as pn ∈ (0, 1) and N −→ ∞. Therefore:

lim
N−→∞

Pr

(∣∣∣∣∑σ∈M lσ(βy)−E(lσ(βy))

E(M∗
n)

∣∣∣∣ > ϵ

)
≤ 1

ϵ2

E

(∣∣∑
σ∈M lσ(βy)−E(lσ(βy))

∣∣2)
E(M∗

n)
2

= 0

for any ϵ > 0 and all βy ∈ Θ.

For the second term in the RHS, the summands are bounded uniformly in σ and do not

depend on βy. Following the same arguments as before, it is easy to verify that
(
M∗

n
Mn

− pn

)
p−→ 0,

and therefore, M∗
n

E(M∗
n)

p−→ 1.
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Appendix E.2. Proof of Theorem 2

We first rewrite the score vector as:

Sn(βy) =
N∑
i

∑
j ̸=i

∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

∂

∂βy
lσ(βy)︸ ︷︷ ︸
sσ

, (E.3)

where, as before,

s(σ;βy) = rσ{1{zσ = 1}(1− Λ(r′σβy))− 1{zσ = −1}Λ(r′σβy)} (E.4)

Notice that twice as many elements than are needed are being summed over, due to the permu-

tation invariance of senders and receivers, but I apply the similar summation over the elements

of the Hessian in the following. Thus the normalization will be correct.

Step 1.

The first step of the proof consists on defining a projection of the score vector. Defining the

information set Fn = {{xij}NN , {αi,y}N , {γj,y}N}, the projection of the score is given by:

Un(βy,0) =

N∑
i

∑
j ̸=i

∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

E(s(σ{i, i′; j, j′};βy,0) | ỹij ,Fn)

=
∑
i

∑
j ̸=i

vij(βy,0) (E.5)

where vij(βy,0) =
∑

i′ ̸=i,j

∑
j′ ̸=i,j,i′ E(s(σ{i, i′; j, j′},βy,0) | ỹij ,Fn). Note that while this pro-

jection resembles a Hájek projection, as in (Serfling 2009), it is not formally one, since (i) the

kernel is not symmetric in the arguments, and (ii) the conditioning terms are more involved -

since they are not only related to the dyad i, j.

Before moving to the next steps of the proof, I present some intermediate results that will

become relevant.

Intermediate result 1.

Note that E(s(σ;βy,0)) = 0, since, from sufficiency, we have that, by defining Fσ to be the
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collection of covariates and fixed effects for the nodes in the quadruple σ:

Pr(zσ = 1 | Fσ) = Λ(r′σβy,0)Pr(zσ{−1, 1} | Fσ)

Pr(zσ = −1 | Fσ) = (1− Λ(r′σβy,0))Pr(zσ{−1, 1} | Fσ)

Then,

E[s(σ,βy,0)] = E
[
E[1{zσ = 1}(1− Λ(r′σβy,0))r

′
σ − 1{zσ = −1}Λ(r′σβy,0)r

′
σ | Fσ]

]
= E

[
E[1{zσ = 1} | Fσ](1− Λ(r′σβy,0))r

′
σ −E[1{zσ = −1} | Fσ]Λ(r

′
σβy,0)r

′
σ

]
= 0. (E.6)

Intermediate result 2.

From the first intermediate result, it also follows that:

E[vij(βy,0)] =
∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

E
[
E[s(σ{i, i′; j, j′},βy,0) | ỹij ,Fn]

]
=
∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

E[s(σ{i, i′; j, j′},βy,0)] = 0 (E.7)

And, importantly, from this result, it follows that E[Un(βy,0)] = 0.

Intermediate result 3.

First, note that, similarly to Graham (2017) link decisions are conditionally independent, that is,

considering nodes i, j, and k, conditional on these agents observed and unobserved characteristics,

the events that i and j are connected, i and k are connected, and j and k are connected are

independent of each other. Then, we have that:

E[vij(βy,0)vi′j′(βy,0)] = E
[
E[vij(βy,0)vi′j′(βy,0) | Fn]

]
= E

[
E[vij(βy,0) | Fn]E[vi′j′(βy,0) | Fn]

]
= 0 (E.8)

unless i = i′ and j = j′.
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Intermediate result 4.

Also from conditional independence of links, E[sσ(βy,0)sσ′(βy,0)
′] = E [E[sσ(βy,0)sσ′(βy,0)

′ | Fn]] =

0 unless σ and σ′ share one dyad in common.

Step 2.

The second step of the proof consists of showing the asymptotic equivalence between the nor-

malized score vector and the normalized projection. That is, to show that Υ−1/2Un(βy,0) and

Υ−1/2Sn(βy,0) are asymptotically equivalent, where Υ is the covariance matrix of the projection.

First, note that the covariance matrix of the projection is given by, given the Intermediate

results 1 and 2:

Υ = E[Un(βy,0)Un(βy,0)
′]

=
∑
i

∑
j ̸=i

E[vij(βy,0)vi′j′(βy,0)]

=
∑
i

∑
j ̸=i

E

∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

E[s(σ{i, i′; j, j′},βy,0) | ỹij ,Fn]
∑
i′′ ̸=i,j

∑
j′′ ̸=i,j,i′′

E[s(σ{i, i′′; j, j′′},βy,0) | ỹij ,Fn]
′


=
∑
i

∑
j ̸=i

∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

∑
i′′ ̸=i,j

∑
j′′ ̸=i,j,i′′

E
[
E[s(σ{i, i′; j, j′},βy,0) | ỹij ,Fn]E[s(σ{i, i′′; j, j′′},βy,0) | ỹij ,Fn]

′]
(E.9)

This matrix is positive definite, and therefore Υ1/2 exists and is positive definite and invertible.

Furthermore, from Intermediate result 4, we know that the scores are conditionally uncorre-

lated, unless they share one dyad in common. Following the reasoning in Jochmans (2018), in

the expression above, there are O(N6) terms with only one dyad in common, and the num-

ber of terms with more than one dyad in common in o(N6). Therefore, the leading term of

E[Un(βy,0)Un(βy,0)
′] is comprised of correlations between E[s(σ{i, i′; j, j′},βy,0) | ỹij ,Fn] and

E[s(σ{i, i′′; j, j′′},βy,0) | ỹij ,Fn] for which quadruples {i, i′; j, j′}, {i, i′′; j, j′′} share exactly one

dyad in common.

Moreover, given that, conditional on Fn and ỹij , s(σ{i, i′; j, j′},βy,0) and s(σ{i, i′′; j, j′′},βy,0)
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are independent if i′ ̸= i′′ and j′ ̸= j′′, we can characterize the leading term as:

Υl =
∑
i

∑
j ̸=i

∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

∑
i′′ ̸=i,j,i′,j′

∑
j′′ ̸=i,j,i′,j′,i′′

E
[
E[s(σ{i, i′; j, j′},βy,0) | ỹij ,Fn]E[s(σ{i, i′′; j, j′′},βy,0) | ỹij ,Fn]

′]
=
∑
i

∑
j ̸=i

∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

∑
i′′ ̸=i,j,i′,j′

∑
j′′ ̸=i,j,i′,j′,i′′

E
[
E[s(σ{i, i′; j, j′},βy,0)s(σ{i, i′′; j, j′′},βy,0) | ỹij ,Fn]

′]
=
∑
i

∑
j ̸=i

∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

∑
i′′ ̸=i,j,i′,j′

∑
j′′ ̸=i,j,i′,j′,i′′

E
[
s(σ{i, i′; j, j′},βy,0)s(σ{i, i′′; j, j′′},βy,0)

′]
(E.10)

where the second equality follows from conditional independence. This matrix is positive definite,

and therefore Υ
1/2
l exists and is positive definite and invertible.

To show asymptotic equivalence, we want to establish that, following Van der Vaart (2000):

lim
N−→∞

Υ−1/2
E
[
(Un(βy,0)− Sn(βy,0))(Un(βy,0)− Sn(βy,0))

′]Υ−1/2 = 0.

Or,

lim
N−→∞

Υ−1/2
E
[
Un(βy,0)Un(βy,0)

′ − Sn(βy,0)Un(βy,0)
′ −Un(βy,0)Sn(βy,0)

′ + Sn(βy,0)Sn(βy,0)
′]Υ−1/2 = 0.

The next step is to show that the (leading term of the) covariance matrix of the score Sn(βy,0)

is the same as the (leading term of the) covariance matrix for the projection, that is given above.

The covariance of the score is given by E[Sn(βy,0)Sn(βy,0)
′]. However, by similar arguments as

before, we can focus on the leading term, which comprises of quadruples sharing one dyad in

common. By symmetry of the scores in the sender and receiver nodes, we can fix this to be the

first sender-receiver ij dyad and multiply the expression for the scores by 4. The leading term

of E[Sn(βy,0)Sn(βy,0)
′] is then given by:

Υs,l =
∑
i

∑
j ̸=i

∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

∑
i′′ ̸=i,j,i′,j′

∑
j′′ ̸=i,j,i′,j′,i′′

16×E
[
s(σ{i, i′; j, j′},βy,0)s(σ{i, i′′; j, j′′},βy,0)

′]
(E.11)

52



Thus, we immediately have that Υs,l = 16×Υl. It also follows not only that Υ−1/2E[Un(βy,0)Un(βy,0)
′]Υ−1/2 =

I+o(1), but also from the equivalence of the leading terms, it also follows that Υ−1/2E[Sn(βy,0)Sn(βy,0)
′]Υ−1/2 =

I + o(1). We can also see that, given:

E[Sn(βy,0)Un(βy,0)
′] =

∑
i

∑
j ̸=i

∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

∑
i′′ ̸=i,j

∑
j′′ ̸=i,j,i′′

E[s(σ{i, i′; j, j′},βy,0)]E[s(σ{i, i′′; j, j′′},βy,0) | ỹij ,Fn]
′],

and applying the same reasoning as before, Υ−1/2E[Sn(βy,0)Un(βy,0)
′]Υ−1/2 = I + o(1), and

analogously, we have that Υ−1/2E[Un(βy,0)Sn(βy,0)
′]Υ−1/2 = I + o(1), which proves the asymp-

totic equivalence above.

The next steps follow exactly Jochmans (2018), but they are illustrated below.

Step 3.

Recall that vij are zero mean and independent conditional on the sequence of covariates (this

relaxes the intermediate result 3, since the fixed effects are differenced out). Let

ΥX =

N∑
i=1

∑
j ̸=i

E
(
vijv

′
ij | {xij}N,N

)
.

By a conditional version of the Lyapunov’s CLT (Rao 2009):

Υ
−1/2
X Un(βy,0)

d−→ N(0, I)

conditional on the covariates. By Assumption 4.5, it is easy to see that ||ΥX−Υ|| p−→ 0. Defining

a matrix Υn(β̂y) to be the plug-in estimator of Υ based on the matrix Υs,l above, such that:

Υn(β̂y) =
∑
i

∑
j ̸=i

∑
i′ ̸=i,j

∑
j′ ̸=i,j,i′

∑
i′′ ̸=i,j,i′,j′

∑
j′′ ̸=i,j,i′,j′,i′′

16×
[
s(σ{i, j, i′, j′}, β̂y)s(σ{i, j, i′′, j′′}, β̂y)

′
]

(E.12)

Using the same arguments as the ones in the next section to establish convergence of the nor-
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malized Hessian, we can show that this estimator is consistent, and therefore:

Υn(β̂y)
−1/2Un(βy,0)

d−→ N(0, I)

as N −→ ∞, by applying the Slutsky’s theorem. Note that his also implies that, due to the

asymptotic equivalence result:

Υn(β̂y)
−1/2Sn(βy,0)

d−→ N(0, I)

Step 4.

We proceed by showing the convergence of the Hessian. Recall that the Hessian is

Hn(βy) =
∑

σ∈Mn

rσr
′
σf
(
r′σθ
)
1 {zσ ∈ {−1, 1}} .

We need to show that

sup
βy∈Θ

∥∥∥∥Hn(βy)

M∗
n

− E (Hn(βy))

Mnpn

∥∥∥∥ p−→ 0

as N → ∞. The matrix limN→∞ (Mnpn)
−1E (Hn(βy,0)) is the matrix given in Assumption 4.

Because we have shown in the proof of Theorem 1 that (M∗
n/Mn − pn)

p−→ 0 as N → ∞ it suffices

to show

supβy∈Θ ∥Hn(βy)− E (Hn(βy))∥
Mnpn

p−→ 0

as N → ∞. To show this we verify the conditions of Lemma 2.9 of Newey and McFadden (1994).

First, a Taylor expansion gives

∥Hn(βy,1)−Hn(βy,2)∥
Mnpn

≤

(
(Mnpn)

−1
∑

σ∈Mn

∥rσ∥3 1 {zσ ∈ {−1, 1}}

)
sup
ϵ∈R

∣∣∣∣∂f(ϵ)∂ϵ

∣∣∣∣ ∥βy,1 − βy,2∥

for any βy,1, βy,2 ∈ Θ. Next, using the same arguments as those used to establish Theorem 1 we

find that

(Mnpn)
−1

∑
σ∈Mn

∥rσ∥3 1 {zσ ∈ {−1, 1}} = Op(1)
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where we use the moment condition in Assumption 5. Because the derivative of f is bounded

uniformly on R we obtain

∥Hn (βy,1)−Hn (βy,2)∥
Mnpn

= Op(1) ∥βy,1 − βy,2∥

for any βy,1,βy,2 ∈ Θ. Thus, the Hessian matrix is stochastically equicontinuous. This im-

plies that uniform convergence follows from pointwise convergence on Θ. Assumption 5 implies

that E
(
∥rσ∥4 | zσ ∈ {−1, 1}

)
is uniformly bounded in σ while f is bounded uniformly on R.

Therefore, the same arguments as those used to establish Theorem 1 yield the convergence result

∥Hn(βy)− E (Hn(βy))∥
Mnpn

p−→ 0

for all βy ∈ Θ. Uniform convergence has been shown.

Step 5.

Limit distribution of the estimator. An expansion of the first-order condition to the log-likelihood

optimization problem around βy,0 together with the results obtained above yields

Ω−1/2
n

(
β̂y − βy,0

)
= −Ω−1/2

n Hn

(
β∗
y

)−1
Sn (βy,0)

d−→ N(0, I)

as N → ∞ by an application of Slutsky’s theorem. Here, β∗
y ∈ Θ is a value that lies between

β̂y and βy,0. This conclusion is the limit result stated in Theorem 2. The statement on the

convergence rate in the theorem is implied by the fact thatΥ = O (N(N − 1)pn). This rate result

follows from the same argument as the convergence rate of (Mnpn)
−1 Ln(βy) to its expectation

in the proof of Theorem 1 given above and can readily be deduced from the expression for Υs,l

given above. The proof of Theorem 2 is thus complete.
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